Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jacobian Conjecture" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
A counterexample to a conjecture of Drużkowski and Rusek
Autorzy:
van den Essen, Arno
Powiązania:
https://bibliotekanauki.pl/articles/1311428.pdf
Data publikacji:
1995
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
polynomial automorphisms
Jacobian Conjecture
Opis:
Let F = X + H be a cubic homogeneous polynomial automorphism from $ℂ^n$ to $ℂ^n$. Let $p$ be the nilpotence index of the Jacobian matrix JH. It was conjectured by Drużkowski and Rusek in [4] that $deg F^{-1} ≤ 3^{p-1}$. We show that the conjecture is true if n ≤ 4 and false if n ≥ 5.
Źródło:
Annales Polonici Mathematici; 1995, 62, 2; 173-176
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Global attractor of a differentiable autonomous system on the plane
Autorzy:
Nguyen, Chau
Powiązania:
https://bibliotekanauki.pl/articles/1311425.pdf
Data publikacji:
1995
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Markus-Yamabe Conjecture
asymptotically stable
Jacobian Conjecture
Opis:
We study the structure of a differentiable autonomous system on the plane with non-positive divergence outside a bounded set. It is shown that under certain conditions such a system has a global attractor. The main result here can be seen as an improvement of the results of Olech and Meisters in [7,9] concerning the global asymptotic stability conjecture of Markus and Yamabe and the Jacobian Conjecture.
Źródło:
Annales Polonici Mathematici; 1995, 62, 2; 143-154
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some remarks to the Jacobian conjecture
Autorzy:
Lara-Dziembek, S.
Biernat, G.
Pawlak, E.
Powiązania:
https://bibliotekanauki.pl/articles/122630.pdf
Data publikacji:
2017
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
Jacobian
zero at infinity
Jacobian Conjecture
zero w nieskończoności
hipoteza Jakobianowa
odwzorowanie wielomianu
Opis:
This work is related to the Jacobian Conjecture. It contains the formulas concerning algebraic dependence of the polynomial mappings having two zeros at infinity and the constant Jacobian. These relations mean that such mappings are non-invertible. They reduce the Jacobian Conjecture only to the case of mappings having one zero at infinity. This case is already solved by Abhyankar. The formulas presented in the paper were illustrated by the large example.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2017, 16, 1; 87-96
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monodromy, differential equations and the Jacobian conjecture
Autorzy:
Friedland, Shmuel
Powiązania:
https://bibliotekanauki.pl/articles/1293854.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Jacobian conjecture
Gauss-Manin connection
monodromy
Opis:
We study certain problems on polynomial mappings related to the Jacobian conjecture.
Źródło:
Annales Polonici Mathematici; 1999, 72, 3; 219-249
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Jacobian Conjecture in case of "non-negative coefficients"
Autorzy:
Drużkowski, Ludwik
Powiązania:
https://bibliotekanauki.pl/articles/1294772.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
polynomial automorphisms
nilpotent matrix
Jacobian Conjecture
Opis:
It is known that it is sufficient to consider in the Jacobian Conjecture only polynomial mappings of the form $F(x₁,...,x_n) = x - H(x) := (x₁ - H₁(x₁,...,x_n),...,x_n - H_n(x₁,...,x_n))$, where $H_j$ are homogeneous polynomials of degree 3 with real coefficients (or $H_j = 0$), j = 1,...,n and H'(x) is a nilpotent matrix for each $x = (x₁,...,x_n) ∈ ℝ^n$.
We give another proof of Yu's theorem that in the case of non-negative coefficients of H the mapping F is a polynomial automorphism, and we moreover prove that in that case $deg F^{-1} ≤ (deg F)^{ind F - 1}$, where $ind F := max{ind H'(x): x ∈ ℝ^n}$. Note that the above inequality is not true when the coefficients of H are arbitrary real numbers; cf. [E3].
Źródło:
Annales Polonici Mathematici; 1997, 66, 1; 67-75
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the global asymptotic stability problem and the Jacobian conjecture
Autorzy:
Drużkowski, L. M.
Powiązania:
https://bibliotekanauki.pl/articles/1839158.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
hipoteza jakobianu
global stability problem
Jacobian Conjecture
Opis:
In this survey, we recall the formulation of the problems and give a review of some nontrivial results in the area. Let F = (F1,...,Fn] : R^n - --> R^n be a C^1 map and let F'(x) and Jac F(x) = det F'(x) denote the Jacobian matrix and the jacobian of F at a point x belongs to R^n, respectively. The Global Asymptotic Stability Problem (GASP) reads as follows: Assume that F(0] = 0 and at any point x belongs to R^n all eigenvalues of F'(x) have negative real parts. Then consider the associated system of differential equations x'j(t] = Fj(x1(t), ...,Xn(t)), j = 1,...,n. The question is whether the solution x[t] = 0 is globally asymptotically stable. If n > 2, then the answer is negative (even if F is a a polynomial automorphism), so from now on (GASP) denotes (GASP) restricted to R^2. In 1963, Olech showed that under the (GASP) assumption (i. e., Jac F[x) > 0 and Trace F'(x) = [...] < 0 for any x belong to R^2) the conclusion of (GASP) is equivalent to the injectivity of F. In 1994, Fessler, and independently Gutierrez, proved the injectivity of F and, due to the above mentioned Olech's equivalence, gave the affirmative answer to the two-dimensional (GASP). Let K denote R or C, n > 1. The Jacobian Conjecture can be formulated as follows: If F = (F1, ... ,Fn) : K^n --> K^n is a polynomial map with a constant nonzero jacobian, then F is a polynomial automorphism (i.e. there exists F^-1 and F^-1 is also a polynomial map). Although the Jacobian Conjecture is still unsolved even in the case of n = 2, it is convenient, to consider the so called Generalized Jacobian Conjecture (for short (GJC)): the Jacobian Conjecture holds for every n > 1. We give a review of some interesting conditions equivalent to the Jacobian Conjecture, including Meisters and Olech's result on the existence of a poly-flow solution of the associated Ważewski equation x'(t) = [F'(x(t))]^-1 (a). We also present, a reduction of (GJC) to the case of F of degree 3 and of special forms, then some partial results, and (JC)'s relations with other problems.
Źródło:
Control and Cybernetics; 2005, 34, 3; 747-762
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-zero constant Jacobian polynomial maps of $ℂ²$
Autorzy:
Chau, Nguyen
Powiązania:
https://bibliotekanauki.pl/articles/1294068.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Jacobian conjecture
polynomial automorphism
Newton-Puiseux expansion
Opis:
We study the behavior at infinity of non-zero constant Jacobian polynomial maps f = (P,Q) in ℂ² by analyzing the influence of the Jacobian condition on the structure of Newton-Puiseux expansions of branches at infinity of level sets of the components. One of the results obtained states that the Jacobian conjecture in ℂ² is true if the Jacobian condition ensures that the restriction of Q to the curve P = 0 has only one pole.
Źródło:
Annales Polonici Mathematici; 1999, 71, 3; 287-310
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies