Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hyperchaos" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation
Autorzy:
Vaidyanathan, S.
Volos, C.
Pham, V.-T.
Powiązania:
https://bibliotekanauki.pl/articles/229321.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
chaos
hyperchaos
control
synchronization
circuit realization
Opis:
In this research work, a twelve-term novel 5-D hyperchaotic Lorenz system with three quadratic nonlinearities has been derived by adding a feedback control to a ten-term 4-D hyperchaotic Lorenz system (Jia, 2007) with three quadratic nonlinearities. The 4-D hyperchaotic Lorenz system (Jia, 2007) has the Lyapunov exponents L1 = 0.3684,L2 = 0.2174,L3 = 0 and L4 =−12.9513, and the Kaplan-Yorke dimension of this 4-D system is found as DKY =3.0452. The 5-D novel hyperchaotic Lorenz system proposed in this work has the Lyapunov exponents L1 = 0.4195,L2 = 0.2430,L3 = 0.0145,L4 = 0 and L5 = −13.0405, and the Kaplan-Yorke dimension of this 5-D system is found as DKY =4.0159. Thus, the novel 5-D hyperchaotic Lorenz system has a maximal Lyapunov exponent (MLE), which is greater than the maximal Lyapunov exponent (MLE) of the 4-D hyperchaotic Lorenz system. The 5-D novel hyperchaotic Lorenz system has a unique equilibrium point at the origin, which is a saddle-point and hence unstable. Next, an adaptive controller is designed to stabilize the novel 5-D hyperchaotic Lorenz system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 5-D hyperchaotic Lorenz systems with unknown system parameters. Finally, an electronic circuit realization of the novel 5-D hyperchaotic Lorenz system using SPICE is described in detail to confirm the feasibility of the theoretical model.
Źródło:
Archives of Control Sciences; 2014, 24, 4; 409-446
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hyperchaos, adaptive control and synchronization of a novel 4-D hyperchaotic system with two quadratic nonlinearities
Autorzy:
Vaidyanathan, S.
Powiązania:
https://bibliotekanauki.pl/articles/229724.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
chaos
hyperchaos
control
synchronization
Lyapunov exponents
Opis:
This research work announces an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. We describe the qualitative properties of the novel 4-D hyperchaotic system and illustrate their phase portraits. We show that the novel 4-D hyperchaotic system has two unstable equilibrium points. The novel 4-D hyperchaotic system has the Lyapunov exponents L1 = 3.1575, L2 = 0.3035, L3 = 0 and L4 = −33.4180. The Kaplan-Yorke dimension of this novel hyperchaotic system is found as DKY = 3.1026. Since the sum of the Lyapunov exponents of the novel hyperchaotic system is negative, we deduce that the novel hyperchaotic system is dissipative. Next, an adaptive controller is designed to stabilize the novel 4-D hyperchaotic system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 4-D hyperchaotic systems with unknown system parameters. The adaptive control results are established using Lyapunov stability theory. MATLAB simulations are depicted to illustrate all the main results derived in this research work
Źródło:
Archives of Control Sciences; 2016, 26, 4; 471-495
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation
Autorzy:
Vaidyanathan, S.
Volos, C.
Pham, V.-T.
Madhavan, K.
Powiązania:
https://bibliotekanauki.pl/articles/229709.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hyperchaos
hyperjerk system
adaptive control
backstepping control
synchronization
Opis:
A hyperjerk system is a dynamical system, which is modelled by an nth order ordinary differential equation with n 4 describing the time evolution of a single scalar variable. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a system of n first order ordinary differential equations with n 4. In this research work, a 4-D novel hyperchaotic hyperjerk system has been proposed, and its qualitative properties have been detailed. The Lyapunov exponents of the novel hyperjerk system are obtained as L1 = 0:1448;L2 = 0:0328;L3 = 0 and L4 = −1:1294. The Kaplan-Yorke dimension of the novel hyperjerk system is obtained as DKY = 3:1573. Next, an adaptive backstepping controller is designed to stabilize the novel hyperjerk chaotic system with three unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve global hyperchaos synchronization of the identical novel hyperjerk systems with three unknown parameters. Finally, an electronic circuit realization of the novel jerk chaotic system using SPICE is presented in detail to confirm the feasibility of the theoretical hyperjerk model.
Źródło:
Archives of Control Sciences; 2015, 25, 1; 135-158
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis, Adaptive Control and Synchronization of a Novel 4-D Hyperchaotic Hyperjerk System via Backstepping Control Method
Autorzy:
Vaidyanathan, S.
Powiązania:
https://bibliotekanauki.pl/articles/229914.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hyperchaos
hyperjerk system
adaptive control
backstepping control
synchronization
Opis:
A hyperjerk system is a dynamical system, which is modelled by an nth order ordinary differential equation with n ≥ 4 describing the time evolution of a single scalar variable. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a system of n first order ordinary differential equations with n ≥ 4. In this research work, a 4-D novel hyperchaotic hyperjerk system with two nonlinearities has been proposed, and its qualitative properties have been detailed. The novel hyperjerk system has a unique equilibrium at the origin, which is a saddle-focus and unstable. The Lyapunov exponents of the novel hyperjerk system are obtained as L1 = 0.14219, L2 = 0.04605, L3 = 0 and L4 = −1.39267. The Kaplan-Yorke dimension of the novel hyperjerk system is obtained as DKY = 3.1348. Next, an adaptive controller is designed via backstepping control method to stabilize the novel hyperjerk chaotic system with three unknown parameters. Moreover, an adaptive controller is designed via backstepping control method to achieve global synchronization of the identical novel hyperjerk systems with three unknown parameters. MATLAB simulations are shown to illustrate all the main results derived in this research work on a novel hyperjerk system.
Źródło:
Archives of Control Sciences; 2016, 26, 3; 311-338
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new multistable double-scroll 4-D hyperchaotic system with no equilibrium point, its bifurcation analysis, synchronization and circuit design
Autorzy:
Vaidyanathan, Sundarapandian
He, Shaobo
Simbas, Aceng
Powiązania:
https://bibliotekanauki.pl/articles/1409110.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hyperchaos
hyperchaotic systems
hidden attractors
multistability
sliding mode control
circuit design
Opis:
In this work, we have developed a new 4-D dynamical system with hyperchaos and hidden attractor. First, by introducing a feedback input control into the 3-D Ma chaos system (2004), we obtain a new 4-D hyperchaos system with no equilibrium point. Thus, we derive a new hyperchaos system with hidden attractor. We carry out an extensive bifurcation analysis of the new hyperchaos model with respect to the three parameters. We also carry out probability density distribution analysis of the new hyperchaotic system. Interestingly, the new nonlinear hyperchaos system exhibits multistability with coexisting attractors. Next, we discuss global hyperchaos self-synchronization for the new hyperchaos system via Integral Sliding Mode Control (ISMC). As an engineering application, we realize the new 4-D hyperchaos system with an electronic circuit via MultiSim. The outputs of the MultiSim hyperchaos circuit show good match with the numerical MATLAB plots of the hyperchaos model. We also analyze the power spectral density (PSD) of the hyperchaos of the state variables using MultiSim.
Źródło:
Archives of Control Sciences; 2021, 31, 1; 99-128
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new 4-D hyperchaotic four-wing system, its bifurcation analysis, complete synchronization and circuit simulation
Autorzy:
Vaidyanathan, Sundarapandian
Benkouider, Khaled
Sambas, Aceng
Safaan, Samy Abdelwahab
Powiązania:
https://bibliotekanauki.pl/articles/2175110.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
multistability
Hyperchaos
four-wing systems
hyperchaotic systems
synchronization
sliding mode control
circuit design
Opis:
In this work, we modify the dynamics of 3-D four-wing Li chaotic system (Li et al. 2015) by introducing a feedback controller and obtain a new 4-D hyperchaotic four-wing system with complex properties. We show that the new hyperchaotic four-wing system have three saddle-foci balance points, which are unstable. We carry out a detailed bifurcation analysis for the new hyperchaotic four-wing system and show that the hyperchaotic four-wing system has multistability and coexisting attractors. Using integral sliding mode control, we derive new results for the master-slave synchronization of hyperchaotic four-wing systems. Finally, we design an electronic circuit using MultiSim for real implementation of the new hyperchaotic four-wing system.
Źródło:
Archives of Control Sciences; 2022, 32, 3; 507--534
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new two-scroll 4-D hyperchaotic system with a unique saddle point equilibrium, its bifurcation analysis, circuit design and a control application to complete synchronization
Autorzy:
Vaidyanathan, Sundarapandian
Moroz, Irene M.
Sambas, Aceng
Powiązania:
https://bibliotekanauki.pl/articles/27312011.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
hyperchaos
hyperchaotic systems
bifurcation analysis
multi-stability analysis
synchronization
Multisim
circuit simulation
Opis:
In this work, we present new results for a two-scroll 4-D hyperchaotic system with a unique saddle point equilibrium at the origin. The bifurcation and multi-stability analysis for the new hyperchaotic system are discussed in detail. As a control application, we develop a feedback control based on integral sliding mode control (ISMC) for the complete synchronization of a pair of two-scroll hyperchaotic systems developed in this work. Numerical simulations using Matlab are provided to illustrate the hyperchaotic phase portraits, bifurcation diagrams and synchronization results. Finally, as an electronic application, we simulate the new hyperchaotic system using Multisim for real-world implementations.
Źródło:
Archives of Control Sciences; 2023, 33, 2; 277--298
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Regular and chaotic dynamics of a 4-DOF mechanical system with dry friction
Autorzy:
Kosińska, A.
Awrejcewicz, J.
Grzelczyk, D.
Powiązania:
https://bibliotekanauki.pl/articles/950423.pdf
Data publikacji:
2016
Wydawca:
Politechnika Poznańska. Instytut Mechaniki Stosowanej
Tematy:
periodicity
quasiperiodicity
chaos
hyperchaos
non-regular vibrations
okresowość
quasi-okresowość
hiperchaos
drgania nieliniowe
Opis:
In this paper the model of four degree-of-freedom mechanical sliding system with dry friction is considered. One of the components of the mentioned system rides on driving belt, which is driven at constant velocity. This model corresponds to a row of carriage laying on a guideway, which moves at constant velocity with respect to the guideway as a foundation. From a mathematical point of view the analyzed problem is governed by four second order differential equations of motion, and numerical analysis is performed in Mathematica software. Some interesting behaviors are detected and reported using Phase Portraits, Poincaré Maps and Lyapunov Exponents. Moreover, Power Spectral Densities obtained by the Fast Fourier Transform technique are reported. The presented results show different behaviors of the system, including periodic, quasi-periodic and chaotic orbits.
Źródło:
Vibrations in Physical Systems; 2016, 27; 195-202
0860-6897
Pojawia się w:
Vibrations in Physical Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies