Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hölder Continuity Property" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Wieners type regularity criteria on the complex plane
Autorzy:
Siciak, Józef
Powiązania:
https://bibliotekanauki.pl/articles/1294812.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
subharmonic functions
logarithmic potential theory
Green function
regular points
Hölder Continuity Property
Opis:
We present a number of Wiener's type necessary and sufficient conditions (in terms of divergence of integrals or series involving a condenser capacity) for a compact set E ⊂ ℂ to be regular with respect to the Dirichlet problem. The same capacity is used to give a simple proof of the following known theorem [2, 6]: If E is a compact subset of ℂ such that $d(t^{-1}E ∩ {|z-a| ≤ 1}) ≥ const > 0$ for 0 < t ≤ 1 and a ∈ E, where d(F) is the logarithmic capacity of F, then the Green function of ℂ \ E with pole at infinity is Hölder continuous.
Źródło:
Annales Polonici Mathematici; 1997, 66, 1; 203-221
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies