Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Genetic algorithm" wg kryterium: Temat


Tytuł:
Analiza wybranych metod walidacji krzyżowej w programie RSES
Analysis of selected cross-validation methods in the RSES program
Autorzy:
Kołpacki, Radosław
Powiązania:
https://bibliotekanauki.pl/articles/41203506.pdf
Data publikacji:
2024
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
walidacja krzyżowa
RSES
analiza danych
zależność
algorytm genetyczny
cross-validation
data analysis
dependency
genetic algorithm
Opis:
W artykule przeprowadzono analizę zbioru danych za pomocą dwóch metod walidacji krzyżowej. Wykorzystano program RSES do identyfikacji kluczowych właściwości i relacji w zbiorze. Wyniki wykazują wpływ niektórych parametrów na potencjalną dokładność wyników.
This article presents an analysis of a dataset using two cross-validation methods. The RSES program was employed to identify key properties and relationships within the dataset. The results indicate the impact of certain parameters on the potential accuracy of the outcomes.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2024, 16, 1
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza wybranych metod walidacji krzyżowej w programie RSES
Analysis of selected cross-validation methods in the RSES program
Autorzy:
Bethke, Beata
Powiązania:
https://bibliotekanauki.pl/articles/41203515.pdf
Data publikacji:
2024
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
walidacja krzyżowa
RSES
analiza danych
zależność
algorytm genetyczny
cross-validation
data analysis
dependency
genetic algorithm
Opis:
W artykule przeprowadzono analizę zbioru danych za pomocą dwóch metod walidacji krzyżowej. Wykorzystano program RSES do identyfikacji kluczowych właściwości i relacji w zbiorze. Wyniki wykazują wpływ niektórych parametrów na potencjalną dokładność wyników.
This article presents an analysis of a dataset using two cross-validation methods. The RSES program was employed to identify key properties and relationships within the dataset. The results indicate the impact of certain parameters on the potential accuracy of the outcomes.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2024, 16, 1; 11-14
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A generative approach to hull design for a small watercraft
Autorzy:
Karczewski, Artur
Kozak, Janusz
Powiązania:
https://bibliotekanauki.pl/articles/32917891.pdf
Data publikacji:
2023
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
method
generative design
yacht
optimisation
genetic algorithm
Opis:
In the field of ocean engineering, the task of spatial hull modelling is one of the most complicated problems in ship design. This study presents a procedure applied as a generative approach to the design problems for the hull geometry of small vessels using elements of concurrent design with multi-criteria optimisation processes. Based upon widely available commercial software, an algorithm for the mathematical formulation of the boundary conditions, the data flow during processing and formulae for the optimisation processes are developed. As an example of the application of this novel approach, the results for the hull design of a sailing yacht are presented.
Źródło:
Polish Maritime Research; 2023, 1; 4-12
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A genetic algorithm based optimized convolutional neural network for face recognition
Autorzy:
Karlupia, Namrata
Mahajan, Palak
Abrol, Pawanesh
Lehana, Parveen K.
Powiązania:
https://bibliotekanauki.pl/articles/2201023.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
convolutional neural network
genetic algorithm
deep learning
evolutionary technique
sieć neuronowa konwolucyjna
algorytm genetyczny
uczenie głębokie
technika ewolucyjna
Opis:
Face recognition (FR) is one of the most active research areas in the field of computer vision. Convolutional neural networks (CNNs) have been extensively used in this field due to their good efficiency. Thus, it is important to find the best CNN parameters for its best performance. Hyperparameter optimization is one of the various techniques for increasing the performance of CNN models. Since manual tuning of hyperparameters is a tedious and time-consuming task, population based metaheuristic techniques can be used for the automatic hyperparameter optimization of CNNs. Automatic tuning of parameters reduces manual efforts and improves the efficiency of the CNN model. In the proposed work, genetic algorithm (GA) based hyperparameter optimization of CNNs is applied for face recognition. GAs are used for the optimization of various hyperparameters like filter size as well as the number of filters and of hidden layers. For analysis, a benchmark dataset for FR with ninety subjects is used. The experimental results indicate that the proposed GA-CNN model generates an improved model accuracy in comparison with existing CNN models. In each iteration, the GA minimizes the objective function by selecting the best combination set of CNN hyperparameters. An improved accuracy of 94.5% is obtained for FR.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 1; 21--31
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A genetic algorithm-based approach for flexible job shop rescheduling problem with machine failure interference
Autorzy:
Liang, Zhongyuan
Zhong, Peisi
Zhang, Chao
Yang, Wenlei
Xiong, Wei
Yang, Shihao
Meng, Jing
Powiązania:
https://bibliotekanauki.pl/articles/27320976.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
genetic algorithm
rescheduling
machine failure
flexible job shop scheduling
Opis:
Rescheduling is the guarantee to maintain the reliable operation of production system process. In production system, the original scheduling scheme cannot be carried out when machine breaks down. It is necessary to transfer the production tasks in the failure cycle and replan the production path to ensure that the production tasks are completed on time and maintain the stability of production system. To address this issue, in this paper, we studied the event-driven rescheduling policy in dynamic environment, and established the usage rules of right-shift rescheduling and complete rescheduling based on the type of interference events. And then, we proposed the rescheduling decision method based on genetic algorithm for solving flexible job shop scheduling problem with machine fault interference. In addition, we extended the "mk" series of instances by introducing the machine fault interference information. The solution data show that the complete rescheduling method can respond effectively to the rescheduling of flexible job shop scheduling problem with machine failure interference.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 4; art. no. 171784
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of genetic algorithm for double-lap adhesive joint design
Autorzy:
Kurennov, Sergei
Barakhov, Konstantin
Polyakov, Olexander
Taranenko, Igor
Powiązania:
https://bibliotekanauki.pl/articles/27309876.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
adhesive joint
genetic algorithm
optimization
finite difference method
Goland-Reissner model
złącze klejowe
algorytm genetyczny
optymalizacja
metoda różnic skończonych
Model Golanda-Reissnera
Opis:
The problem of optimal design of symmetrical double-lap adhesive joint is considered. It is assumed that the main plate has constant thickness, while the thickness of the doublers can vary along the joint length. The optimization problem consists in finding optimal length of the joint and an optimal cross-section of the doublers, which provide minimum structural mass at given strength constraints. The classical Goland-Reissner model was used to describe the joint stress state. A corresponding system of differential equations with variable coefficients was solved using the finite difference method. Genetic optimization algorithm was used for numerical solution of the optimization problem. In this case, Fourier series were used to describe doubler thickness variation along the joint length. This solution ensures smoothness of the desired function. Two model problems were solved. It is shown that the length and optimal shape of the doubler depend on the design load.
Źródło:
Archive of Mechanical Engineering; 2023, LXX, 1; 27--42
0004-0738
Pojawia się w:
Archive of Mechanical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Beam Pattern Optimization Via Unequal Ascending Clusters
Autorzy:
Abdulqader, Ahmed Jameel
Mohammed, Jafar Ramadhan
Ali, Yessar E. Mohammad
Powiązania:
https://bibliotekanauki.pl/articles/2200966.pdf
Data publikacji:
2023
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
beam pattern
clustered array
genetic algorithm
sidelobes
Opis:
In this paper, two different architectures based on completely and sectionally clustered arrays are proposed to improve the array patterns. In the wholly clustered arrays, all elements of the ordinary array are divided into multiple unequal ascending clusters. In the sectionally clustered arrays, two types of architectures are proposed by dividing a part of the array into clusters based on the position of specific elements. In the first architecture of sectionally clustered arrays, only those elements that are located on the sides of the array are grouped into unequal ascending clusters, and other elements located in the center are left as individual and unoptimized items (i.e. uniform excitation). In the second architecture, only some of the elements close the center are grouped into unequal ascending clusters, and the side elements were left individually and without optimization. The research proves that the sectionally clustered architecture has many advantages compared to the completely clustered structure, in terms of the complexity of the solution. Simulation results show that PSLL in the side clustered array can be reduced to more than −28 dB for an array of 40 elements. The PSLL was −17 dB in the case of a centrally clustered array, whereas the complexity percentage in the wholly clustered array method was 12 .5 %, while the same parameter for the partially clustered array method equaled 10%.
Źródło:
Journal of Telecommunications and Information Technology; 2023, 1; 1--7
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Brain tumor classification in MRI imagesusing genetic algorithm appended CNN
Autorzy:
Balamurugan, Thiyagu
Gnanamanoharan, E.
Powiązania:
https://bibliotekanauki.pl/articles/38703164.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
deep learning
convolutional neural networks
EfficientNetB3
genetic algorithm
brain tumor classification
głęboka nauka
splotowe sieci neuronowe
algorytm genetyczny
klasyfikacja nowotworów mózgu
Opis:
Brain tumors are fatal for majority of the patients, the different nature of the tumorcells requires the use of combined medical measures, and categorizing such tumors isa difficult task for radiologists. The diagnostic structures based on PCs have been offeredas an aid in diagnosing a brain tumor using magnetic resonance imaging (MRI). Generalfunctions are retrieved from the lowest layers of the neural network, and these lowestlayers are responsible for capturing low-level features and patterns in the raw input data,which can be particularly unique to the raw image. To validate this, the EfficientNetB3pre-trained model is utilized to classify three types of brain tumors: glioma, meningioma,and pituitary tumor. Initially, the characteristics of several EfficientNet modules are takenfrom the pre-trained EfficientNetB3 version to locate the brain tumor. Three types of braintumor datasets are used to assess each approach. Compared to the existing deep learningmodels, the concatenated functions of EfficientNetB3 and genetic algorithms give betteraccuracy. Tensor flow 2 and Nesterov-accelerated adaptive moment estimation (Nadam)are also employed to improve the model training process by making it quicker and better.The proposed technique using CNN attains an accuracy of 99.56%, a sensitivity of 98.9%,a specificity of 98.6%, an F-score of 98.9%, a precision of 98.9%, and a recall of 99.54%.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 3; 305-321
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Calculation strength optimum of surgical robot effector for mechanical eigenproblems using FEM and genetic algorithm
Autorzy:
Ilewicz, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/24201993.pdf
Data publikacji:
2023
Wydawca:
Politechnika Poznańska. Instytut Mechaniki Stosowanej
Tematy:
surgical robot
resonance phenomena
elastic buckling
optimization
genetic algorithm
FEM
robot chirurgiczny
zjawisko rezonansu
wyboczenie sprężyste
optymalizacja
algorytm genetyczny
MES
Opis:
It is essential to check whether the surgical robot end effector is safe to use due to phenomena such as linear buckling and mechanical resonance. The aim of this research is to build an multi criteria optimization model based on such criteria as the first natural frequency, buckling factor and mass, with the assumption of the basic constraint in the form of a safety factor. The calculations are performed for a serial structure of surgical robot end effector with six degrees of freedom ended with a scalpel. The calculation model is obtained using the finite element method. The issue of multi-criteria optimization is solved based on the response surface method, Pareto fronts and the genetic algorithm. The results section illustrates deformations of a surgical robot end effector occurring during the resonance phenomenon and the buckling deformations for subsequent values of the buckling coefficients. The dependencies of the geometrical dimensions on the criteria are illustrated with the continuous functions of the response surface, i.e. metamodels. Pareto fronts are illustrated, based on which the genetic algorithm finds the optimal quantities of the vector function. The conducted analyzes provide a basis for selecting surgical robot end effector drive systems from the point of view of their generated inputs.
Źródło:
Vibrations in Physical Systems; 2023, 34, 1; art. no. 2023106
0860-6897
Pojawia się w:
Vibrations in Physical Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Embryonic Architecture with Built-in Self-test and GA Evolved Configuration Data
Autorzy:
Malhotra, Gayatri
Duraiswamy, Punithavathi
Kishore, J.K.
Powiązania:
https://bibliotekanauki.pl/articles/27311869.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
embryonic
BIST
Self-test
Genetic Algorithm
Cartesian Genetic Programming
Opis:
The embryonic architecture, which draws inspiration from the biological process of ontogeny, has built-in mechanisms for self-repair. The entire genome is stored in the embryonic cells, allowing the data to be replicated in healthy cells in the event of a single cell failure in the embryonic fabric. A specially designed genetic algorithm (GA) is used to evolve the configuration information for embryonic cells. Any failed embryonic cell must be indicated via the proposed Built-in Selftest (BIST) the module of the embryonic fabric. This paper recommends an effective centralized BIST design for a novel embryonic fabric. Every embryonic cell is scanned by the proposed BIST in case the self-test mode is activated. The centralized BIST design uses less hardware than if it were integrated into each embryonic cell. To reduce the size of the data, the genome or configuration data of each embryonic cell is decoded using Cartesian Genetic Programming (CGP). The GA is tested for the 1-bit adder and 2-bit comparator circuits that are implemented in the embryonic cell. Fault detection is possible at every function of the cell due to the BIST module’s design. The CGP format can also offer gate-level fault detection. Customized GA and BIST are combined with the novel embryonic architecture. In the embryonic cell, self-repair is accomplished via data scrubbing for transient errors.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 2; 211--217
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Finite element model updating of steel-concrete composite bridge: A study case of the Ruri bridge in Vietnam
Autorzy:
Nguyen, Duc Cong
Salamak, Marek
Katunin, Andrzej
Gerges, Michael
Abdel-Maguid, Mohamed
Powiązania:
https://bibliotekanauki.pl/articles/27312150.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
analiza drgań
akcelerometr
model elementów skończonych
uaktualnienie
most betonowy
optymalizacja roju cząstek
algorytm genetyczny
vibration analysis
accelerometer
finite element model
update
concrete bridge
particle swarm optimisation
genetic algorithm
Opis:
The study presents the finite element (FE) model update of the existing simple-spans steel-concrete composite bridge structure using a particle swarm optimisation (PSO) and genetic algorithm (GA) approaches. The Wireless Structural Testing System (STS-WiFi) of Bridge Diagnostic, Inc. from the USA, implemented various types of sensors including: LVDT displacement sensors, intelligent strain transducers, and accelerometers that the static and dynamic historical behaviors of the bridge structure have been recorded in the field testing. One part of all field data sets has been used to calibrate the cross-sectional stiffness properties of steel girders and material of steel beams and concrete deck in the structural members including 16 master and slave variables, and that the PSO and GA optimisation methods in the MATLAB software have been developed with the new innovative tools to interface with the analytical results of the FE model in the ANSYS APDL software automatically. The vibration analysis from the dynamic responses of the structure have been conducted to extract four natural frequencies from experimental data that have been compared with the numerical natural frequencies in the FE model of the bridge through the minimum objective function of percent error to be less than 10%. In order to identify the experimental mode shapes of the structure more accurately and reliably, the discrete-time state-space model using the subspace method (N4SID) and fast Fourier transform (FFT) in MATLAB software have been applied to determine the experimental natural frequencies in which were compared with the computed natural frequencies. The main goal of the innovative approach is to determine the representative FE model of the actual bridge in which it is applied to various truck load configurations according to bridge design codes and standards. The improved methods in this document have been successfully applied to the Vietnamese steel-concrete composite bridge in which the load rating factors (RF) of the AASHTO design standards have been calculated to predict load limits, so the final updated FE model of the existing bridge is well rated with all RF values greater than 1.0. The presented approaches show great performance and the potential to implement them in industrial conditions.
Źródło:
Archives of Civil Engineering; 2023, 69, 3; 425--443
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
FSPL: A meta-learning approach for a filter and embedded feature selection pipeline
Autorzy:
Lazebnik, Teddy
Rosenfeld, Avi
Powiązania:
https://bibliotekanauki.pl/articles/2201020.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
feature selection pipeline
meta learning
no free lunch
autoML
genetic algorithm
wybór funkcji
metauczenie
algorytm genetyczny
Opis:
There are two main approaches to tackle the challenge of finding the best filter or embedded feature selection (FS) algorithm: searching for the one best FS algorithm and creating an ensemble of all available FS algorithms. However, in practice, these two processes usually occur as part of a larger machine learning pipeline and not separately. We posit that, due to the influence of the filter FS on the embedded FS, one should aim to optimize both of them as a single FS pipeline rather than separately. We propose a meta-learning approach that automatically finds the best filter and embedded FS pipeline for a given dataset called FSPL. We demonstrate the performance of FSPL on n = 90 datasets, obtaining 0.496 accuracy for the optimal FS pipeline, revealing an improvement of up to 5.98 percent in the model’s accuracy compared to the second-best meta-learning method.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 1; 103--115
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Minimizing the Makespan and Total Tardiness in Hybrid Flow Shop Scheduling with Sequence-Dependent Setup Times
Autorzy:
Mousavi, Seyyed Mostafa
Shahnazari-Shahrezaei, Parisa
Powiązania:
https://bibliotekanauki.pl/articles/2201180.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
dispatching rule
genetic algorithm
hybrid flow shop
neighborhood search structure
Opis:
The paper considers the production scheduling problem in a hybrid flow shop environment with sequence-dependent setup times and the objectives of minimizing both the makespan and the total tardiness. The multi-objective genetic algorithm is applied to solve this problem, which belongs to the non-deterministic polynomial-time (NP)-hard class. In the structure of the proposed algorithm, the initial population, neighborhood search structures and dispatching rules are studied to achieve more efficient solutions. The performance of the proposed algorithm compared to the efficient algorithm available in literature (known as NSGA-II) is expressed in terms of the data envelopment analysis method. The computational results confirm that the set of efficient solutions of the proposed algorithm is more efficient than the other algorithm.
Źródło:
Management and Production Engineering Review; 2023, 14, 1; 13--24
2080-8208
2082-1344
Pojawia się w:
Management and Production Engineering Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling Microcystis Cell Density in a Mediterranean Shallow Lake of Northeast Algeria (Oubeira Lake), Using Evolutionary and Classic Programming
Autorzy:
Arif, Salah
Djellal, Adel
Djebbari, Nawel
Belhaoues, Saber
Touati, Hassen
Guellati, Fatma Zohra
Bensouilah, Mourad
Powiązania:
https://bibliotekanauki.pl/articles/2174666.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
microcystis cell density
Multiple Linear Regression
Support Vector Machine
Particle Swarm Optimization
Genetic Algorithm
Bird Swarm Algorithm
Opis:
Caused by excess levels of nutrients and increased temperatures, freshwater cyanobacterial blooms have become a serious global issue. However, with the development of artificial intelligence and extreme learning machine methods, the forecasting of cyanobacteria blooms has become more feasible. We explored the use of multiple techniques, including both statistical [Multiple Regression Model (MLR) and Support Vector Machine (SVM)] and evolutionary [Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Bird Swarm Algorithm (BSA)], to approximate models for the prediction of Microcystis density. The data set was collected from Oubeira Lake, a natural shallow Mediterranean lake in the northeast of Algeria. From the correlation analysis of ten water variables monitored, six potential factors including temperature, ammonium, nitrate, and ortho-phosphate were selected. The performance indices showed; MLR and PSO provided the best results. PSO gave the best fitness but all techniques performed well. BSA had better fitness but was very slow across generations. PSO was faster than the other techniques and at generation 20 it passed BSA. GA passed BSA a little further, at generation 50. The major contributions of our work not only focus on the modelling process itself, but also take into consideration the main factors affecting Microcystis blooms, by incorporating them in all applied models.
Źródło:
Geomatics and Environmental Engineering; 2023, 17, 2; 31--68
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of Animal Detection in Thermal Images Using YOLO Architecture
Autorzy:
Popek, Łukasz
Perz, Rafał
Galiński, Grzegorz
Abratański, Artur
Powiązania:
https://bibliotekanauki.pl/articles/27311963.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
artificial neural networks
YOLOv5
transfer learning
genetic algorithm
thermal imaging
Opis:
The article presents research on animal detection in thermal images using the YOLOv5 architecture. The goal of the study was to obtain a model with high performance in detecting animals in this type of images, and to see how changes in hyperparameters affect learning curves and final results. This manifested itself in testing different values of learning rate, momentum and optimizer types in relation to the model’s learning performance. Two methods of tuning hyperparameters were used in the study: grid search and evolutionary algorithms. The model was trained and tested on an in-house dataset containing images with deer and wild boars. After the experiments, the trained architecture achieved the highest score for Mean Average Precision (mAP) of 83%. These results are promising and indicate that the YOLO model can be used for automatic animal detection in various applications, such as wildlife monitoring, environmental protection or security systems.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 4; 826--831
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies