Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gödel" wg kryterium: Temat


Tytuł:
A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions
Autorzy:
Cornejo, Juan Manuel
Sankappanavar, Hanamantagouda P.
Powiązania:
https://bibliotekanauki.pl/articles/43189647.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
semi-intuitionistic logic
dually hemimorphic semi-Heyting logic
dually quasi-De Morgan semi-Heyting logic
De Morgan semi-Heyting logic
dually pseudocomplemented semi-Heyting logic
regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1
implicative logic
equivalent algebraic semantics
algebraizable logic
De Morgan Gödel logic
dually pseudocomplemented Gödel logic
Moisil's logic
3-valued Łukasiewicz logic
Opis:
The variety \(\mathbb{DHMSH}\) of dually hemimorphic semi-Heyting algebras was introduced in 2011 by the second author as an expansion of semi-Heyting algebras by a dual hemimorphism. In this paper, we focus on the variety \(\mathbb{DHMSH}\) from a logical point of view. The paper presents an extensive investigation of the logic corresponding to the variety of dually hemimorphic semi-Heyting algebras and of its axiomatic extensions, along with an equally extensive universal algebraic study of their corresponding algebraic semantics. Firstly, we present a Hilbert-style axiomatization of a new logic called "Dually hemimorphic semi-Heyting logic" (\(\mathcal{DHMSH}\), for short), as an expansion of semi-intuitionistic logic \(\mathcal{SI}\) (also called \(\mathcal{SH}\)) introduced by the first author by adding a weak negation (to be interpreted as a dual hemimorphism). We then prove that it is implicative in the sense of Rasiowa and that it is complete with respect to the variety \(\mathbb{DHMSH}\). It is deduced that the logic \(\mathcal{DHMSH}\) is algebraizable in the sense of Blok and Pigozzi, with the variety \(\mathbb{DHMSH}\) as its equivalent algebraic semantics and that the lattice of axiomatic extensions of \(\mathcal{DHMSH}\) is dually isomorphic to the lattice of subvarieties of \(\mathbb{DHMSH}\). A new axiomatization for Moisil's logic is also obtained. Secondly, we characterize the axiomatic extensions of \(\mathcal{DHMSH}\) in which the "Deduction Theorem" holds. Thirdly, we present several new logics, extending the logic \(\mathcal{DHMSH}\), corresponding to several important subvarieties of the variety \(\mathbb{DHMSH}\). These include logics corresponding to the varieties generated by two-element, three-element and some four-element dually quasi-De Morgan semi-Heyting algebras, as well as a new axiomatization for the 3-valued Łukasiewicz logic. Surprisingly, many of these logics turn out to be connexive logics, only a few of which are presented in this paper. Fourthly, we present axiomatizations for two infinite sequences of logics namely, De Morgan Gödel logics and dually pseudocomplemented Gödel logics. Fifthly, axiomatizations are also provided for logics corresponding to many subvarieties of regular dually quasi-De Morgan Stone semi-Heyting algebras, of regular De Morgan semi-Heyting algebras of level 1, and of JI-distributive semi-Heyting algebras of level 1. We conclude the paper with some open problems. Most of the logics considered in this paper are discriminator logics in the sense that they correspond to discriminator varieties. Some of them, just like the classical logic, are even primal in the sense that their corresponding varieties are generated by primal algebras.
Źródło:
Bulletin of the Section of Logic; 2022, 51, 4; 555-645
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Note on Gödel-Dummet Logic LC
Autorzy:
Robles, Gemma
Méndez, José M.
Powiązania:
https://bibliotekanauki.pl/articles/2033854.pdf
Data publikacji:
2021-07-01
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Intermediate logics
Gödel-Dummet logic LC
Opis:
Let \(A_{0},A_{1},...,A_{n}\) be (possibly) distintict wffs, \(n\) being an odd number equal to or greater than 1. Intuitionistic Propositional Logic IPC plus the axiom \((A_{0}\rightarrow A_{1})\vee ...\vee (A_{n-1}\rightarrow A_{n})\vee (A_{n}\rightarrow A_{0})\) is equivalent to Gödel-Dummett logic LC. However, if \(n\) is an even number equal to or greater than 2, IPC plus the said axiom is a sublogic of LC.
Źródło:
Bulletin of the Section of Logic; 2021, 50, 3; 325-335
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Can a Robot Be Grateful? Beyond Logic, Towards Religion
Autorzy:
Krajewski, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/451269.pdf
Data publikacji:
2018-12-28
Wydawca:
Uniwersytet Warszawski. Wydział Filozofii
Tematy:
computer science
robot
Gödel’s theorem
digitalization
Pythagoreanism
context
Church’s Thesis
philosophy of dialogue
gratitude
prayer
Opis:
Philosophy should seriously take into account the presence of computers. Computer enthusiasts point towards a new Pythagoreanism, a far reaching generalization of logical or mathematical views of the world. Most of us try to retain a belief in the permanence of human superiority over robots. To justify this superiority, Gödel’s theorem has been invoked, but it can be demonstrated that this is not sufficient. Other attempts are based on the scope and fullness of our perception and feelings. Yet the fact is that more and more can be computer simulated. In order to secure human superiority over robots, reference to the realm of human relations and attitudes seems more promising. Insights provided by philosophy of dialogue can help. They suggest an ultimate extension of the Turing test. In addition, it seems that in order to justify the belief in human superiority one must rely on the individual experiences that indicate a realm that is not merely subjective. It makes sense to call it religious.
Źródło:
Eidos. A Journal for Philosophy of Culture; 2018, 2, 4(6); 4-13
2544-302X
Pojawia się w:
Eidos. A Journal for Philosophy of Culture
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Czy Gödel unicestwił marzenie Leibniza?
Autorzy:
Krajewski, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/2103009.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
G.W. Leibniz
K. Gödel
mechanizacja myślenia
sztuczna inteligencja
twierdzenia limitacyjne
Opis:
Marzeniem Leibniza było, aby zmechanizować rozumowania tak, by stały się podobne do obliczeń maszynowych. Dzisiejszy sposób ujęcia tego planu to pomysł, by zaprogramować proces rozumowania. Twierdzenie Gödla zakwestionowało realność tego marzenia – nawet w odniesieniu do matematyki. Nie wyklucza ono jednak tego, że cała dostępna ludziom matematyka mogłaby być zaprogramowana przez hipotetyczną nadludzką inteligencję. Zarazem jest widoczne, że od kilkudziesięciu lat rozwijają się komputery, robotyka, sztuczna inteligencja, czyli w praktyce marzenie Leibniza ulega stopniowej realizacji. Ponadto, wbrew wyobrażeniom Leibniza, nawet percepcja jest częściowo symulowana maszynowo. Mimo wielkich sukcesów sztuczna inteligencja napotyka fundamentalne przeszkody. Ich wspólnym mianownikiem jest konieczność uwzględniania kontekstu.
Źródło:
Przegląd Filozoficzny. Nowa Seria; 2016, 4; 497-504
1230-1493
Pojawia się w:
Przegląd Filozoficzny. Nowa Seria
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Czy istnieją czynności umysłu, których nie można reprezentować za pomocą maszyn Turinga?
Are there activities of the mind that cannot be represented by Turing machines?
Autorzy:
Fornal, Marzena
Powiązania:
https://bibliotekanauki.pl/articles/38425363.pdf
Data publikacji:
2023-09-11
Wydawca:
Akademia Humanistyczno-Ekonomiczna w Łodzi
Tematy:
komputacjonizm
obliczeniowa teoria umysłu
argument gödlowski
Roger Penrose
maszyna Turinga
Kurt Gödel
John Randolph Lucas
computationalism
computational theory of mind
Gödelian argument
Turing machine
Opis:
Artykuł stanowi próbę odpowiedzi na pytanie, czy jesteśmy w stanie wskazać takie czynności umysłu, które nie są możliwe do reprezentacji za pomocą maszyny Turinga? Jest to zatem pytanie o to, czy wszystkie nasze stany mentalne posiadają obliczeniową naturę. Problem ten będzie rozważany w odniesieniu do tak zwanego argumentu gödlowskiego, opierającego się na dwóch twierdzeniach Gödla: 1) o niezupełności oraz 2) o niedowodliwości niesprzeczności, skierowanego przeciwko obliczeniowym teoriom umysłu. Argument ten w wersji zaprezentowanej przez Johna Randolpha Lucasa zostanie poddany krytycznej analizie, która doprowadzi do pozytywnych wniosków zawartych w końcowej części artykułu.
The article is an attempt to answer the question whether we are able to identify such activities of the mind that are not possible to be represented by a Turing machine? Thus, it is a question of whether all our mental states have a computational nature. This problem will be considered in relation to the so-called Gödel argument, based on two Gödel theorems: 1. on incompleteness and 2. on the incompleteness of non-contradiction, directed against computational theories of mind. This argument, as presented by John Randolph Lucas, will be critically analyzed, which will lead to positive conclusions in the final part of the article.
Źródło:
Kultura i Wychowanie; 2023, 23, 1; 107-115
2544-9427
2083-2923
Pojawia się w:
Kultura i Wychowanie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Czy matematyka jest składnią języka? Kurta Gödla argument przeciwko formalizmowi
Is Mathematics Syntax of Language? Kurt Gödel’s Argument against Formalism
Autorzy:
Głowacki, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/2142987.pdf
Data publikacji:
2021-11-20
Wydawca:
Uniwersytet Warszawski. Wydział Filozofii
Tematy:
Kurt Gödel
formalism
syntactic interpretation of mathematics
Rudolf Carnap
platonism
Opis:
In this paper, I critically examine Kurt Gödel’s argument against the syntactic interpretation of mathematics. While the main aim is to analyze the argument, I also wish to underscore the relevance of the original elements of Gödel’s philosophical thought. The paper consists of four parts. In the first part, I introduce the reader to Gödel’s philosophy. In the second part, I reconstruct the formalist stance in the philosophy of mathematics, which is the object of Gödel’s criticism. In the third part, I sketch his argument against the syntactic interpretation of mathematics. Finally, I discuss some controversies regarding the argument.
Źródło:
Filozofia Nauki; 2021, 29, 1; 43-61
1230-6894
2657-5868
Pojawia się w:
Filozofia Nauki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dawne godła polskich aptek i problem ich ochrony
THE ANCIENT SIGNS OF THE POLISH PHARMACIES AND THE PROBLEM OF THEIR PROTECTION
Autorzy:
Roeske, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/535294.pdf
Data publikacji:
1973
Wydawca:
Narodowy Instytut Dziedzictwa
Tematy:
godła apteczne
godła dawnych aptek
inwentaryzacja godeł aptecznych
motywy zwierzęce w godłach aptek
Opis:
The a u th o r, a h is to rian of p h a rm a cy , is d ealin g w ith a h ighly in te re s tin g an d new p ro b lem of p ro te c tio n of signs an d emb lems in old tim e s m a rk in g th e an c ie n t Po lish p h a rm a c ie s. In th e s e a p p a re n tly u n im p o rta n t relics may be tra c ed th e c en tu rie s old tra d itio n a c comp an y in g th e d ev e lo pm en t of p h a rm a cy . A lth o u g h n o t a ll an c ie n t p h a rm a cy signs can be considered as th o se possessing h igh a rtis tic or a r c h ite c tu ra l v a lu e s it is th e h is to ric a l reaso n s th a t d ic ta te a n u rg e n t n e ed to p re s e rv e th em in place s w h e re th e y w e re c re a ted . An ap p ro a ch to th e p h a rm a cy signs according to w h ich th ey could be tre a te d as th e o b je c ts from th e a re a of th e Polish m a te ria l c u ltu re w ill e n ab le th e ir p ro te c tio n an d p re s e rv a tio n . The m a tte r h a s risen to im p o rta n t p ro b lem a s th e ra p id g row th of h e a lth service an d th e th u s ad v an c in g to ta l mo d e rn iz a tio n of p h a rm a c ie s pro v id e s an easily u n d e rs ta n d a b le rise to fe a rs th a t th e n o t s a tisfa c to rily considered decisions can be m ad e le ad in g to rem o v a l of an c ie n t p h a rm a cy signs. In his a rtic le th e a u th o r gives a good d eal of h is to ric a l an d p h a rm a c e u tic a l in fo rm a tio n ex p la in in g th e p ro v en an c e of p h a rm a c y signs. In a n tiq u ity as w e ll as in th e Middle Ages v a rious k in d s of symbols w e re in use fo r m a rk in g th e dw e llin g -h o u se s, th e a rtis a n s ’ w o rk sh o p s or tra d e sm e n ’s sta lls th e re a s th e n um e ric a l m a rk in g s w e re in tro d u c e d a t th e much la te r dates. Th e above e x p lan a tio n re la te s in eq u a l m e a su re to signs of th e a n c ie n t p h a rm a c ie s. T h e ir fir s t specimens in P o lan d may be fo u n d as la te as in th e six te e n th c en tu ry . L ik e on th e whole E u ro p e an co n tin e n t also in th is co u n try v a rio u s c rite ria w e re ap p lied fo r th e ir choice. The motifs, th e persons, symbols a s w e ll as th e n am e s of p a tro n s fo r signs a n d emb lems w e re ta k e n from b o th G re ek an d Roman mythology (e.g. Aesculapius, Hygea, Themis, Minerva), from th e Holy Bible (Holy Virgin Mary, angels, saints) a n d from among th e o u ts tan d in g h is to ric a l p erso n ag es (e.g. K in g Ca sim iru s th e G re a t, Qu e en Hedvig, C o p e rnicus, G en e ra l Kościuszko or King S ta n is la u s A u g u stus). A n o th e r g ro u p of symbols was ta k e n from th e re a lm of an im a ls as, e.g. a lion, a tig e r, an e lep h an t, a n eagle , or from th a t of p la n ts ; to th e la s t group of symbols belonged th e th in g s as, fo r in s tan c e , a crown, a b ell, a s ta r o r th e su n an d s.o. A ll signs can be co n sid e red as ex p re s sio n s of th e d e fin ite h is to ric a l c ircum s tan c e s or fe a tu re s ; so, fo r ex am p le , as one of th e mo st e a rly signs used fo r p h a rm a c ie s may be q uoted th a t of a Negro w h ich th e fig u re h ad to rem in d th a t th e m ed ic in a l p la n ts an d o th e r stu ffs w e re im p o rted from o verseas. In sev e ra l in s tan c e s th e p h a rm a cy sign was im m e d ia te ly co nnected w ith th e n am e of th e d ru g g ist himself. As a step fo rw a rd an d , in addition, w e ll se rv in g th e id e a of p re s e rv a tio n of those in te re s ting re lic s is to be con sid e red th e ir in v en to ry in g th e need of w h ich th e a ction is stro n g ly emphasized by th e a u th o r. H av in g th e re so u rc e s a t h an d a p p ro p ria te ly re co rd ed it w ill be possible to u n d e rta k e th e fu r th e r actions. T h e re is bey o n d an y discussion or dou b t th a t th e p h a rm a c y signs a n d emblems owing to th e ir ra r ity a n d in d iv id u a lity sh o u ld be p re s e rv e d a s th e specimens of n a tio n a l c u ltu re .
Źródło:
Ochrona Zabytków; 1973, 1; 47-56
0029-8247
Pojawia się w:
Ochrona Zabytków
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagonal Anti-Mechanist Arguments
Autorzy:
Kashtan, David
Powiązania:
https://bibliotekanauki.pl/articles/1796972.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Semiotyczne
Tematy:
mechanism
mind
computability
incompleteness theorems
computation-al theory of mind
the cogito
diagonal arguments
Gödel
Descartes
Tarski
Turing
Chomsky
Opis:
Gödel’s first incompleteness theorem is sometimes said to refute mechanism about the mind. §1 contains a discussion of mechanism. We look into its origins, motivations and commitments, both in general and with regard to the human mind, and ask about the place of modern computers and modern cognitive science within the general mechanistic paradigm. In §2 we give a sharp formulation of a mechanistic thesis about the mind in terms of the mathematical notion of computability. We present the argument from Gödel’s theorem against mechanism in terms of this formulation and raise two objections, one of which is known but is here given a more precise formulation, and the other is new and based on the discussion in §1.
Źródło:
Studia Semiotyczne; 2020, 34, 1; 203-232
0137-6608
Pojawia się w:
Studia Semiotyczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Filozofia i logika intuicjonizmu
Autorzy:
Fila, Marlena
Powiązania:
https://bibliotekanauki.pl/articles/429258.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Papieski Jana Pawła II w Krakowie
Tematy:
intuitionism
axioms
matrices truth-
Heyting system
Gödel theorem about the inadequacy of finite dimensional matrices for Heyting system
infinite sequence of matrices
Opis:
At the end of the 19th century in the fundamentals of mathematics appeared a crisis. It was caused by the paradoxes found in Cantor’s set theory. One of the ideas a resolving the crisis was intuitionism – one of the constructivist trends in the philosophy of mathematics. Its creator was Brouwer, the main representative was Heyting. In this paper described will be attempt to construct a suitable logic for philosophical intuitionism theses. In second paragraph Heyting system will be present – its axioms and matrices truth-. Later Gödel theorem about the inadequacy of finite dimensional matrices for this system will be explained. At the end this paper an infinite sequence of matrices adequate for Heyting axioms proposed by Jaśkowski will be described.
Źródło:
Semina Scientiarum; 2015, 14
1644-3365
Pojawia się w:
Semina Scientiarum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Filozofia w nauce i nauka w filozofii. Kilka uwag w świetle myśli Stanisława Lema
Autorzy:
Gomułka, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/15049149.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
epistemologia
filozofia
nauka
matematyzowalność świata
technologia
K. Gödel
S. Lem
M. Heller
J. Woleński
Źródło:
Przegląd Filozoficzny. Nowa Seria; 2016, 2; 539-552
1230-1493
Pojawia się w:
Przegląd Filozoficzny. Nowa Seria
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gödel, Wittgenstein and the Sensibility of Platonism
Autorzy:
Poręba, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/1357900.pdf
Data publikacji:
2021-06-30
Wydawca:
Uniwersytet Warszawski. Wydział Filozofii
Tematy:
concepts
Gödel
intuition
mathematics
Platonism
realism
rule-following
Wittgenstein
Opis:
The paper presents an interpretation of Platonism, the seeds of which can be found in the writings of Gödel and Wittgenstein. Although it is widely accepted that Wittgenstein is an anti-Platonist the author points to some striking affinities between Gödel’s and Wittgenstein’s accounts of mathematical concepts and the role of feeling and intuition in mathematics. A version of Platonism emerging from these considerations combines realism with respect to concepts with a view of concepts as accessible to feeling and able to guide our behavior through feeling.
Źródło:
Eidos. A Journal for Philosophy of Culture; 2021, 5, 1; 108-125
2544-302X
Pojawia się w:
Eidos. A Journal for Philosophy of Culture
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gödel’s Incompleteness Theorem and the Anti-Mechanist Argument: Revisited
Autorzy:
Cheng, Yong
Powiązania:
https://bibliotekanauki.pl/articles/1796969.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Semiotyczne
Tematy:
Gödel’s incompleteness theorem
the Anti-Mechanist Argument
Gödel’s Disjunctive Thesis
intensionality
Opis:
This is a paper for a special issue of Semiotic Studies devoted to Stanislaw Krajewski’s paper (2020). This paper gives some supplementary notes to Krajewski’s (2020) on the Anti-Mechanist Arguments based on Gödel’s incompleteness theorem. In Section 3, we give some additional explanations to Section 4–6 in Krajewski’s (2020) and classify some misunderstandings of Gödel’s incompleteness theorem related to AntiMechanist Arguments. In Section 4 and 5, we give a more detailed discussion of Gödel’s Disjunctive Thesis, Gödel’s Undemonstrability of Consistency Thesis and the definability of natural numbers as in Section 7–8 in Krajewski’s (2020), describing how recent advances bear on these issues.
Źródło:
Studia Semiotyczne; 2020, 34, 1; 159-182
0137-6608
Pojawia się w:
Studia Semiotyczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ludwiga Wittgensteina krytyka pierwszego twierdzenia Gödla
Ludwig Wittgenstein’s Critique of Gödel’s First Incompleteness Theorem
Autorzy:
Wierzbińska, Greta
Powiązania:
https://bibliotekanauki.pl/articles/2012892.pdf
Data publikacji:
2010
Wydawca:
Katolicki Uniwersytet Lubelski Jana Pawła II. Towarzystwo Naukowe KUL
Tematy:
Wittgenstein
I twierdzenie Gödla
sprzeczność
filozofia matematyki
Gödel’s First Incompleteness Theorem
inconsistency
philosophy of mathematics
Opis:
Wittgenstein’s RFM remarks on Gödel’s First Incompleteness Theorem have been widely criticized, ridiculed or dismissed out of hand. The principal reason for this is negative evaluation of Wittgenstein’s critique is not Wittgenstein rejection of the standard interpretation of Gödel’s result but rather an exaggerated reaction to a alleged “mistake” Wittgenstein makes while discussing GIT. The aim of my paper, which due to Wittgenstein’s method is merely a draft, is to pull apart the different and the very distinct strands in these remarks to understand them in the context of Wittgenstein’s own philosophy of mathematics, and to determine what merit they have. To understand Wittgenstein’s attitude I will point out his hostility towards mathematical realism, hostility based on the “rule-following considerations” and his conventionalism. As I shall show, the aim of Wittgenstein’s critique is not a proof itself but it’s certain philosophical interpretation (prose). On a number of occasions this leads Wittgenstein to say that we should simply ‘withdraw’ or ‘give up’ this interpretation as if the contradiction goes away with the natural language interpretation.
Źródło:
Roczniki Filozoficzne; 2010, 58, 2; 207-235
0035-7685
Pojawia się w:
Roczniki Filozoficzne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Martin-Löf’s Constructive Optimism
Autorzy:
Peluce, V. Alexis
Powiązania:
https://bibliotekanauki.pl/articles/1796975.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Semiotyczne
Tematy:
optimism
pessimism
Martin-Löf
Gödel’s disjunction
Opis:
In his 1951 Gibbs Memorial Lecture, Kurt Gödel put forth his famous disjunction that either the power of the mind outstrips that of any machine or there are absolutely unsolvable problems. The view that there are no absolutely unsolvable problems is optimism, the view that there are such problems is pessimism. In his 1995—and, revised in 2013—Verificationism Then and Now, Per Martin-Löf presents an illustrative argument for a constructivist form of optimism. In response to that argument, Solomon Feferman points out that Martin-Löf’s reasoning relies upon constructive understandings of key philosophical notions. In the vein of Feferman’s analysis, one might be object to Martin-Löf’s argument for either its reliance upon constructivist (as opposed to classical) considerations, or for its appeal to non-unproblematically mathematical premises. We argue that both of these responses fall short. On one hand, to be critical of Martin-Löf’s reasoning for its constructiveness is to reject what would otherwise be a scientific advance on the basis of the assumption of constructivism’s falsehood or implausibility, which is of course uncharitable at best. On the other hand, to object to the argument for its use of non-unproblematically mathematical premises is to assume that there is some philosophically neutral mathematics, which is implausible. Martin-Löf’s argument relies upon his third law, the claim that from the impossibility of a proof of a proposition we can construct a proof of its negation. We close with a discussion of some ways in which this claim can be criticized from the constructive point of view. Specifically, we contend that Martin-Löf’s third law is incompatible with what has been called “Poincaré’s Principle of Epistemic Conservation”, the thesis that genuine increase in mathematical knowledge requires subject-specific insight.
Źródło:
Studia Semiotyczne; 2020, 34, 1; 233-242
0137-6608
Pojawia się w:
Studia Semiotyczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Anti-Mechanist Arguments Based on Gödel’s Theorem
Autorzy:
Krajewski, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/1796977.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Semiotyczne
Tematy:
Gödel’s theorem
mechanism
Lucas’s argument
Penrose’s argument
computationalism
mind
consistency
algorithm
artificial intelligence
natural number
Opis:
The alleged proof of the non-mechanical, or non-computational, character of the human mind based on Gödel’s incompleteness theorem is revisited. Its history is reviewed. The proof, also known as the Lucas argument and the Penrose argument, is refuted. It is claimed, following Gödel himself and other leading logicians, that antimechanism is not implied by Gödel’s theorems alone. The present paper sets out this refutation in its strongest form, demonstrating general theorems implying the inconsistency of Lucas’s arithmetic and the semantic inadequacy of Penrose’s arithmetic. On the other hand, the limitations to our capacity for mechanizing or programming the mind are also indicated, together with two other corollaries of Gödel’s theorems: that we cannot prove that we are consistent (Gödel’s Unknowability Thesis), and that we cannot fully describe our notion of a natural number.
Źródło:
Studia Semiotyczne; 2020, 34, 1; 9-56
0137-6608
Pojawia się w:
Studia Semiotyczne
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies