Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Fuzzy Support Vector Machine" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
A novel approach for automatic detection and classification of suspicious lesions in breast ultrasound images
Autorzy:
Karimi, B.
Krzyżak, A.
Powiązania:
https://bibliotekanauki.pl/articles/91890.pdf
Data publikacji:
2013
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
automatic detection
classification
breast cancer
cancer lesions
ultrasound images
AdaBoost
artificial neural network
Fuzzy Support Vector Machine
Opis:
In this research, a new method for automatic detection and classification of suspected breast cancer lesions using ultrasound images is proposed. In this fully automated method, de-noising using fuzzy logic and correlation among ultrasound images taken from different angles is used. Feature selection using combination of sequential backward search, sequential forward search and distance-based methods is obtained. A new segmentation method based on automatic selection of seed points and region growing is proposed and classification of lesions into two malignant and benign classes using combination of AdaBoost, Artificial Neural Network and Fuzzy Support Vector Machine classifiers and majority voting is implemented.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2013, 3, 4; 265-276
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance analysis of rough set–based hybrid classification systems in the case of missing values
Autorzy:
Nowicki, Robert K.
Seliga, Robert
Żelasko, Dariusz
Hayashi, Yoichi
Powiązania:
https://bibliotekanauki.pl/articles/2031102.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
rough sets
support vector machine
fuzzy system
neural networks
Opis:
The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 4; 307-318
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of new method of initialisation of neuro - fuzzy systems with support vector machines
Analiza nowej metody inicjalizacji systemów neuronowo – rozmytych z wykorzystaniem maszyn wektorów wspierających
Autorzy:
Simiński, K.
Powiązania:
https://bibliotekanauki.pl/articles/375675.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
support vector machine (SVM)
neuro-fuzzy systems
classification
regression
Opis:
The correspondence between support vector machines and neuro-fuzzy systems is very interesting. The full equivalence for classification and partial for regression has been formally shown. The equivalence has very interesting implication. It is a base for a new method of initialization of neurofuzzy systems, ie. for creating of fuzzy rule base. The commonly used methods are based on reversion of item: the premises of fuzzy rules split input domain into region, thus premises of fuzzy rules can be elaborated by partition of input domain. This leads to three main classes of partition of input domain. The above mentioned equivalence results in new way of creating the rule base. Now the input domain is not partitioned, but the premises of fuzzy rules are extracted from support vector. The objective of the paper is to examine the advantages and disadvantages of this new method for creation of fuzzy rule bases for neuro-fuzzy systems.
Związek pomiedzy maszynami wektorów podpierajacych i systemami neuronoworozmytymi jest bardzo interesujący. Została wykazana pełna odpowiedniość między tymi systemami dla klasyfikacji i częściowa dla regresji. Odpowiedność ta ma bardzo ważną konsekwencję. Jest podstawa do opracowania nowego sposobu tworzenia bazy reguł dla systemu neuronowo-rozmytego. Dotychczasowe metody opieraja się na podziale przestrzeni wejściowej, a następnie przekształcenia tak powstałych regionów w przesłanki rozmytych reguł. Tutaj możliwe jest przekształcanie wektorów wspierających na przesłanki reguł rozmytych. Celem artykułu jest przebadanie możliwości stosowania takiego podejścia do inicjalizacji systemów neuronowo-rozmytych. Eksperymenty wykazują dosć istotną wadę tego podejścia. W jego wyniku powstają bardzo liczne zbiory reguł rozmytych, co zupełnie przeczy idei interpretowalności wiedzy w systemach neuronowo-rozmytych. Manipulacja pewnymi parametrami umożliwia zmiejszenie liczby reguł, jednak manipulacja ta jest trudna i wymaga wielu prób. Drugą dość istotna wadą jest wyraźnie wyższy błąd wypracowywany przez systemy inicjalizowane przez SVM w porównaniu do systemów, których bazy reguł tworzone sa˛ poprzez podział przestrzeni wejściowej.
Źródło:
Theoretical and Applied Informatics; 2012, 24, 3; 243-254
1896-5334
Pojawia się w:
Theoretical and Applied Informatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Daily Suspended Sediment Prediction Using Seasonal Time Series and Artificial Intelligence Techniques
Autorzy:
Üneş, Fatih
Taşar, Bestami
Demirci, Mustafa
Zelenakova, Martina
Kaya, Yunus Ziya
Varçin, Hakan
Powiązania:
https://bibliotekanauki.pl/articles/2069941.pdf
Data publikacji:
2021
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
prediction
neuro-fuzzy
sediment rating curve
support vector machine
suspended sediment
Opis:
Estimating the amount of suspended sediment in rivers correctly is important due to the adverse impacts encountered during the design and maintenance of hydraulic structures such as dams, regulators, water channels and bridges. The sediment concentration and discharge currents have usually complex relationship, especially on long term scales, which can lead to high uncertainties in load estimates for certain components. In this paper, with several data-driven methods, including two types of perceptron support vector machines with radial basis function kernel (SVM-RBF), and poly kernel learning algorithms (SVM-PK), Library SVM (LibSVM), adaptive neuro-fuzzy (NF) and statistical approaches such as sediment rating curves (SRC), multi linear regression (MLR) are used for forecasting daily suspended sediment concentration from daily temperature of water and streamflow in the river. Daily data are measured at Augusta station by the US Geological Survey. 15 different input combinations (1 to 15) were used for SVM-PK, SVM-RBF, LibSVM, NF and MLR model studies. All approaches are compared to each other according to three statistical criteria; mean absolute errors (MAE), root mean square errors (RMSE) and correlation coefficient (R). Of the applied linear and nonlinear methods, LibSVM and NF have good results, but LibSVM generates a slightly better fit under whole daily sediment values.
Źródło:
Rocznik Ochrona Środowiska; 2021, 23; 117--137
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational intelligence methods in the problem of modelling technical wear of buildings in mining areas
Metody inteligencji obliczeniowej w problemie modelowania stopnia zużycia technicznego budynków na terenach górniczych
Autorzy:
Rusek, J.
Powiązania:
https://bibliotekanauki.pl/articles/385956.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
technical wear
neural networks
support vector machine (SVM)
fuzzy systems
szkody górnicze
zużycie techniczne
sieci neuronowe
systemy rozmyte
Opis:
In the work presented approach with a view to building the model of degree of technical wear of buildings in the mining areas, as well as an indication that the contribution of the consumption on technical factors interact mining and civil construction origin. Set out criteria for the selection and research methodology effects are synthetically summarised existing work in this field. Justified choice of the ϵ-SVR method confronting its advantages to the characteristics of typical neural network.
W artykule zaprezentowano podejście mające na celu budowę modelu przebiegu stopnia zużycia technicznego budynków na terenach górniczych, jak również analizowano, w jakim stopniu na zużycie techniczne oddziałują czynniki górnicze oraz ogólnobudowlane. Przedstawiono kryteria doboru metodyki badań oraz podsumowano efekty dotychczasowych prac w tej dziedzinie. Uzasadniono wybór metody &vepsilon;-SVR, konfrontując jej zalety z własnościami typowych, jednokierunkowych sieci neuronowych. Opisano sposób optymalnego doboru parametrów charakteryzujących złożoność modelu ϵ-SVR oraz wskazano możliwość zastosowania tak utworzonego modelu w systemach ekspertowych.
Źródło:
Geomatics and Environmental Engineering; 2012, 6, 3; 83-91
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lung cancer detection using an integration of fuzzy K-Means clustering and deep learning techniques for CT lung images
Autorzy:
Prasad, J. Maruthi Nagendra
Chakravarty, S.
Krishna, M. Vamsi
Powiązania:
https://bibliotekanauki.pl/articles/2173683.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy K-means
artificial neural networks
SVM
support vector machine
crow search optimization algorithm
algorytm rozmytych k-średnich
sztuczne sieci neuronowe
maszyna wektorów wspierających
algorytm optymalizacji wyszukiwania kruków
Opis:
Computer aided detection systems are used for the provision of second opinion during lung cancer diagnosis. For early-stage detection and treatment false positive reduction stage also plays a vital role. The main motive of this research is to propose a method for lung cancer segmentation. In recent years, lung cancer detection and segmentation of tumors is considered one of the most important steps in the surgical planning and medication preparations. It is very difficult for the researchers to detect the tumor area from the CT (computed tomography) images. The proposed system segments lungs and classify the images into normal and abnormal and consists of two phases, The first phase will be made up of various stages like pre-processing, feature extraction, feature selection, classification and finally, segmentation of the tumor. Input CT image is sent through the pre-processing phase where noise removal will be taken care of and then texture features are extracted from the pre-processed image, and in the next stage features will be selected by making use of crow search optimization algorithm, later artificial neural network is used for the classification of the normal lung images from abnormal images. Finally, abnormal images will be processed through the fuzzy K-means algorithm for segmenting the tumors separately. In the second phase, SVM classifier is used for the reduction of false positives. The proposed system delivers accuracy of 96%, 100% specificity and sensitivity of 99% and it reduces false positives. Experimental results shows that the system outperforms many other systems in the literature in terms of sensitivity, specificity, and accuracy. There is a great tradeoff between effectiveness and efficiency and the proposed system also saves computation time. The work shows that the proposed system which is formed by the integration of fuzzy K-means clustering and deep learning technique is simple yet powerful and was effective in reducing false positives and segments tumors and perform classification and delivers better performance when compared to other strategies in the literature, and this system is giving accurate decision when compared to human doctor’s decision.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 3; art. no. e139006
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique based on differential evolution, genetic algorithms and simulated annealing
Wielozadaniowa optymalizacja bioremediacji wód gruntowych in situ z zastosowaniem hybrydowej techniki metaheurystycznej opartej na zróżnicowanej ewolucji, algorytmach genetycznych i symulowanym wyżarzaniu
Autorzy:
Kumar, D.
Ch, S.
Mathur, S.
Adamowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/292714.pdf
Data publikacji:
2015
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
differential evolution
fuzzy logic
genetic algorithm
groundwater
hybrid algorithm
in situ bioremediation
simulated annealing
support vector machine (SVM)
bioremediacja in situ
algorytm hybrydowy
algorytm genetyczny
logika rozmyta
maszyna wektorów nośnych SVM
wyżarzanie symulowane
wody gruntowe
zróżnicowana ewolucja
Opis:
Groundwater contamination due to leakage of gasoline is one of the several causes which affect the groundwater environment by polluting it. In the past few years, In-situ bioremediation has attracted researchers because of its ability to remediate the contaminant at its site with low cost of remediation. This paper proposed the use of a new hybrid algorithm to optimize a multi-objective function which includes the cost of remediation as the first objective and residual contaminant at the end of the remediation period as the second objective. The hybrid algorithm was formed by combining the methods of Differential Evolution, Genetic Algorithms and Simulated Annealing. Support Vector Machines (SVM) was used as a virtual simulator for biodegradation of contaminants in the groundwater flow. The results obtained from the hybrid algorithm were compared with Differential Evolution (DE), Non Dominated Sorting Genetic Algorithm (NSGA II) and Simulated Annealing (SA). It was found that the proposed hybrid algorithm was capable of providing the best solution. Fuzzy logic was used to find the best compromising solution and finally a pumping rate strategy for groundwater remediation was presented for the best compromising solution. The results show that the cost incurred for the best compromising solution is intermediate between the highest and lowest cost incurred for other non-dominated solutions.
Zanieczyszczenie wód gruntowych wyciekami benzyny jest jedną z kilku przyczyn wpływających na środowisko wód podziemnych. W ostatnich latach bioremediacja in situ przyciągała uwagę badaczy z powodu jej zdolności do usuwania zanieczyszczeń w ich siedlisku i niskich kosztów procesu. Przedstawiona praca proponuje użycie nowego algorytmu hybrydowego do optymalizacji wielozadaniowej funkcji, która obejmuje koszty remediacji jako pierwsze zadanie i resztową zawartość zanieczyszczeń po zakończeniu procesu jako drugie z zadań. Algorytm hybrydowy powstał z połączenia metod różnicowej ewolucji, algorytmu genetycznego i symulowanego wyżarzania. Maszyna wektorów nośnych (SVM) została użyta jako wirtualny symulator biologicznej degradacji zanieczyszczeń w wodach gruntowych. Wyniki uzyskane z algorytmy hybrydowego porównano z wynikami zróżnicowanej ewolucji (DE), algorytmu genetycznego (NSGA II) i symulowanego wyżarzania (SA). Stwierdzono, że proponowany algorytm był w stanie zapewnić najlepsze rozwiązanie. Użyto metody z zakresu logiki rozmytej dla znalezienia najlepszego rozwiązania kompromisowego i na końcu przedstawiono dla tego rozwiązania strategię szybkości pompowania celem remediacji wód gruntowych. Wyniki pokazały, że koszty ponoszone na rozwiązanie kompromisowe są pośrednie między najwyższymi i najniższymi kosztami innych rozwiązań.
Źródło:
Journal of Water and Land Development; 2015, 27; 29-40
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies