- Tytuł:
- Comparison of estimation accuracy of EKF, UKF and PF filters
- Autorzy:
-
Konatowski, S.
Kaniewski, P.
Matuszewski, J. - Powiązania:
- https://bibliotekanauki.pl/articles/320725.pdf
- Data publikacji:
- 2016
- Wydawca:
- Polskie Forum Nawigacyjne
- Tematy:
-
non-linear filtering
extended Kalman filter
unscented Kalman filter
particle filter - Opis:
-
Several types of nonlinear filters (EKF — extended Kalman filter, UKF — unscented Kalman filter, PF — particle filter) are widely used for location estimation and their algorithms are described in this paper. In the article filtering accuracy for non-linear form of measurement equation is presented. The results of complex simulations that com-pare the quality of estimation of analyzed non-linear filters for complex non-linearities of state vector are presented. The moves of maneuvering object are described in two-dimensional Cartesian coordinates and the measurements are described in the polar coordinate system. The object dynamics is characterized by acceleration described by the univariate non-stationary growth model (UNGM) function. The filtering accuracy was evaluated not only by the root-mean-square errors (RMSE) but also by statistical testing of innovations through the expected value test, the whiteness test and the WSSR (weighted sum squared residual) test as well. The comparison of filtering quality was done in the MATLAB environment. The presented results provide a basis for designing more accurate algorithms for object location estimation.
W artykule opisane zostały algorytmy filtrów nieliniowych (rozszerzony EKF i bezśladowy UKF filtr Kalmana oraz filtr cząstkowy PF) stosowane powszechnie do estymacji położenia. Porównano dokładność estymacji tych filtrów dla nieliniowego równania pomiarowego. Zaprezentowane zostały rezultaty badań symulacyjnych porównujących jakość estymacji analizowanych rodzajów filtrów nieliniowych dla złożonej nieliniowości wektora stanu. Ruch obiektu manewrującego opisano w dwuwymiarowym układzie kartezjańskim, natomiast pomiary w polarnym układzie współrzędnych. Dynamikę obiektu charakteryzuje przyspieszenie opisane funkcją Univariate-Non-Stationary-Growth-Model. Efektywność badań, poza określaniem błędów średniokwadratowych RMSE, oceniano poprzez statystyczne testowanie innowacji za pomocą: testu wartości oczekiwanej, testu białości oraz testu WSSR (Weighted-Sum-Squared-Residual). Ocena jakości procesu filtracji została przeprowadzona w środowisku MATLAB. Przedstawione wyniki stanowią podstawę do projektowania dokładniejszych algorytmów estymacji położenia obiektu. - Źródło:
-
Annual of Navigation; 2016, 23; 69-87
1640-8632 - Pojawia się w:
- Annual of Navigation
- Dostawca treści:
- Biblioteka Nauki