Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "DNA-repair" wg kryterium: Temat


Tytuł:
Poly(ADP-ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing.
Autorzy:
Allinson, Sarah
Dianova, Irina
Dianov, Grigory
Powiązania:
https://bibliotekanauki.pl/articles/1043660.pdf
Data publikacji:
2003
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
PARP
base excision repair
cell extracts
in vitro repair
abasic sites
DNA repair
Opis:
Poly(ADP-ribose) polymerase (PARP-1) is an abundant nuclear protein with a high affinity for single- and double-strand DNA breaks. Its binding to strand breaks promotes catalysis of the covalent modification of nuclear proteins with poly(ADP-ribose) synthesised from NAD+. PARP-1-knockout cells are extremely sensitive to alkylating agents, suggesting the involvement of PARP-1 in base excision repair; however, its role remains unclear. We investigated the dependence of base excision repair pathways on PARP-1 and NAD+ using whole cell extracts derived from normal and PARP-1 deficient mouse cells and DNA substrates containing abasic sites. In normal extracts the rate of repair was highly dependent on NAD+. We found that in the absence of NAD+ repair was slowed down 4-6-fold after incision of the abasic site. We also established that in extracts from PARP-1 deficient mouse cells, repair of both regular and reduced abasic sites was increased with respect to normal extracts and was NAD+-independent, suggesting that in both short- and long-patch BER PARP-1 slows down, rather than stimulates, the repair reaction. Our data support the proposal that PARP-1 does not play a major role in catalysis of DNA damage processing via either base excision repair pathway.
Źródło:
Acta Biochimica Polonica; 2003, 50, 1; 169-179
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reactive oxygen species in BCR-ABL1-expressing cells - relevance to chronic myeloid leukemia
Autorzy:
Antoszewska-Smith, Joanna
Pawlowska, Elzbieta
Blasiak, Janusz
Powiązania:
https://bibliotekanauki.pl/articles/1038675.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
chronic myeloid leukemia
reactive oxygen species
DNA damage
DNA repair
cancer stem cells
imatinib resistance
Opis:
Chronic myeloid leukemia (CML) results from the t(9;22) reciprocal chromosomal translocation producing the BCR-ABL1 gene, conferring growth and proliferation advantages in the CML cells. CML progresses from chronic, often syndrome-free, to blast phase, fatal if not treated. Although the involvement of BCR-ABL1 in some signaling pathways is considered as the cause of CML, the mechanisms resulting in its progression are not completely known. However, BCR-ABL1 stimulates the production of reactive oxygen species (ROS), which levels increase with CML progression and induce BCR-ABL1 self-mutagenesis. Introducing imatinib and other tyrosine kinase inhibitors (TKIs) to CML therapy radically improved its outcome, but TKIs-resistance became an emerging problem. TKI resistance can be associated with even higher ROS production than in TKI-sensitive cells. Therefore, ROS-induced self-mutagenesis of BCR-ABL1 can be crucial for CML progression and TKI resistance and in this way should be taken into account in therapeutic strategies. As a continuous production of ROS by BCR-ABL1 would lead to its self-destruction and death of CML cells, there must be mechanisms controlling this phenomenon. These can be dependent on DNA repair, which is modulated by BCR-ABL1 and can be different in CML stem and progenitor cells. Altogether, the mechanisms of the involvement of BCR-ABL1 in ROS signaling can be engaged in CML progression and TKI-resistance and warrant further study.
Źródło:
Acta Biochimica Polonica; 2017, 64, 1; 1-10
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bacterial DNA repair genes and their eukaryotic homologues: 2. Role of bacterial mutator gene homologues in human disease. Overview of nucleotide pool sanitization and mismatch repair systems
Autorzy:
Arczewska, Katarzyna
Kuśmierek, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/1040920.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
MutT protein
human MutT homologue
DNA damage
mismatch repair
hereditary non-polyposis colorectal cancer
DNA repair
Opis:
Since the discovery of the first E. coli mutator gene, mutT, most of the mutations inducing elevated spontaneous mutation rates could be clearly attributed to defects in DNA repair. MutT turned out to be a pyrophosphohydrolase hydrolyzing 8-oxodGTP, thus preventing its incorporation into DNA and suppresing the occurrence of spontaneous AT→CG transversions. Most of the bacterial mutator genes appeared to be evolutionarily conserved, and scientists were continuously searching for contribution of DNA repair deficiency in human diseases, especially carcinogenesis. Yet a human MutT homologue - hMTH1 protein - was found to be overexpressed rather than inactivated in many human diseases, including cancer. The interest in DNA repair contribution to human diseases exploded with the observation that germline mutations in mismatch repair (MMR) genes predispose to hereditary non-polyposis colorectal cancer (HNPCC). Despite our continuously growing knowledge about DNA repair we still do not fully understand how the mutator phenotype contributes to specific forms of human diseases.
Źródło:
Acta Biochimica Polonica; 2007, 54, 3; 435-457
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The modulatory effect of physical activity on APE1-mediated telomere length and stability; a narrative review
Autorzy:
Betlej, Gabriela
Kwiatkowska, Aleksandra
Bator, Ewelina
Powiązania:
https://bibliotekanauki.pl/articles/1030810.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Szczeciński. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego
Tematy:
APE1
BER DNA repair
oxidative stress
physical activity
telomeres
Opis:
Physical activity is associated with enhanced generation of reactive oxygen species (ROS) that, in turn, can play a dual role in the human body. Upon physiological conditions, ROS act as secondary messengers in different cell signaling pathways. In contrast, ROS overexpression can lead to oxidative stress and oxidative stress-associated harmful consequences. This exercise-induced interplay among oxidants and antioxidants can modulate numerous physiological and molecular mechanisms, for example telomere length maintenance and stability. The latter is, in turn, under strict control of oxidative stress-activated base excision repair (BER) pathway, one of the DNA repair mechanisms; and growing evidence directs attention to apurinic/ apyrimidinic endonuclease 1 (APE1), a multifunctional BER protein. Therefore, this review intends to address several issues concerning modulatory effect of exercise on APE1-mediated telomere length maintenance and redox activities.
Źródło:
Central European Journal of Sport Sciences and Medicine; 2019, 28, 4; 97-106
2300-9705
2353-2807
Pojawia się w:
Central European Journal of Sport Sciences and Medicine
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A comparison of the in vitro genotoxicity of anticancer drugs idarubicin and mitoxantrone.
Autorzy:
Błasiak, Janusz
Gloc, Ewa
Warszawski, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/1043821.pdf
Data publikacji:
2002
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
mitoxantrone
oxidative DNA damage
DNA damage
idarubicin
comet assay
DNA methylation
DNA repair
Opis:
Idarubicin is an anthracycline antibiotic used in cancer therapy. Mitoxantrone is an anthracycline analog with presumed better antineoplastic activity and lesser toxicity. Using the alkaline comet assay we showed that the drugs at 0.01-10 μM induced DNA damage in normal human lymphocytes. The effect induced by idarubicin was more pronounced than by mitoxantrone (P < 0.001). The cells treated with mitoxantrone at 1 μM were able to repair damage to their DNA within a 30-min incubation, whereas the lymphocytes exposed to idarubicin needed 180 min. Since anthracyclines are known to produce free radicals, we checked whether reactive oxygen species might be involved in the observed DNA damage. Catalase, an enzyme inactivating hydrogen peroxide, decreased the extent of DNA damage induced by idarubicin, but did not affect the extent evoked by mitoxantrone. Lymphocytes exposed to the drugs and treated with endonuclease III or formamidopyrimidine-DNA glycosylase (Fpg), enzymes recognizing and nicking oxidized bases, displayed a higher level of DNA damage than the untreated ones. 3-Methyladenine-DNA glycosylase II (AlkA), an enzyme recognizing and nicking mainly methylated bases in DNA, increased the extent of DNA damage caused by idarubicin, but not that induced by mitoxantrone. Our results indicate that the induction of secondary malignancies should be taken into account as side effects of the two drugs. Direct strand breaks, oxidation and methylation of the DNA bases can underlie the DNA-damaging effect of idarubicin, whereas mitoxantrone can induce strand breaks and modification of the bases, including oxidation. The observed in normal lymphocytes much lesser genotoxicity of mitoxantrone compared to idarubicin should be taken into account in planning chemotherapeutic strategies.
Źródło:
Acta Biochimica Polonica; 2002, 49, 1; 145-155
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Free radical scavengers can modulate the DNA-damaging action of alloxan.
Autorzy:
Blasiak, Janusz
Sikora, Agnieszka
Czechowska, Agnieszka
Drzewoski, Józef
Powiązania:
https://bibliotekanauki.pl/articles/1043667.pdf
Data publikacji:
2003
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
vitamin C
spin trapping
free radicals
alloxan
vitamin E
DNA damage
ebselen
comet assay
DNA repair
diabetes mellitus
Opis:
Alloxan can generate diabetes in experimental animals and its action can be associated with the production of free radicals. It is therefore important to check how different substances often referred to as free radical scavengers may interact with alloxan, especially that some of these substance may show both pro- and antioxidant activities. Using the alkaline comet assay we showed that alloxan at concentrations 0.01-50 μM induced DNA damage in normal human lymphocytes in a dose-dependent manner. Treated cells were able to recover within a 120-min incubation. Vitamins C and E at 10 and 50 μM diminished the extent of DNA damage induced by 50 μM alloxan. Pre-treatment of the lymphocytes with a nitrone spin trap, α-(4-pyridil-1-oxide)- N-t-butylnitrone (POBN) or ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), which mimics glutathione peroxides, reduced the alloxan-evoked DNA damage. The cells exposed to alloxan and treated with formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), enzymes recognizing oxidized and alkylated bases, respectively, displayed greater extent of DNA damage than those not treated with these enzymes. The results confirmed that free radicals are involved in the formation of DNA lesions induced by alloxan. The results also suggest that alloxan can generate oxidized DNA bases with a preference for purines and contribute to their alkylation.
Źródło:
Acta Biochimica Polonica; 2003, 50, 1; 205-210
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hyperthermia can differentially modulate the repair of doxorubicin-damaged DNA in normal and cancer cells*.
Autorzy:
Blasiak, Janusz
Widera, Kinga
Pertyński, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/1043663.pdf
Data publikacji:
2003
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
hyperthermia
drug resistance
K562 cells
DNA repair
Opis:
Hyperthermia can modulate the action of many anticancer drugs, and DNA repair processes are temperature-dependent, but the character of this dependence in cancer and normal cells is largely unknown. This subject seems to be worth studying, because hyperthermia can assist cancer therapy. A 1-h incubation at 37°C of normal human peripheral blood lymphocytes and human myelogenous leukemia cell line K562 with 0.5 μM doxorubicin gave significant level of DNA damage as assessed by the alkaline comet assay. The cells were then incubated in doxorubicin-free repair medium at 37°C or 41°C. The lymphocytes incubated at 37°C needed about 60 min to remove completely the damage to their DNA, whereas at 41°C the time required for complete repair was shortened to 30 min. There was also a difference between the repair kinetics at 37°C and 41°C in cancer cells. Moreover, the kinetics were different in doxorubicin-sensitive and resistant cells. Therefore, hyperthermia may significantly affect the kinetics of DNA repair in drug-treated cells, but the magnitude of the effect may be different in normal and cancer cells. These features may be exploited in cancer chemotherapy to increase the effectiveness of the treatment and reduce unwanted effects of anticancer drugs in normal cells and fight DNA repair-based drug resistance of cancer cells.
Źródło:
Acta Biochimica Polonica; 2003, 50, 1; 191-195
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Protective action of vitamin C against DNA damage induced by selenium-cisplatin conjugate.
Autorzy:
Błasiak, Janusz
Kowalik, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/1044192.pdf
Data publikacji:
2001
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
endonuclease III
vitamin C
Se-Pt conjugate [(NH3)2Pt(SeO3)]
genotoxic effects of anticancer drugs
DNA damage
comet assay
DNA repair
Opis:
Genotoxicity of anticancer drugs is of a special interest due to the risk of inducing secondary malignancies. Vitamin C (ascorbic acid) is a recognized antioxidant and, since human diet can be easily supplemented with vitamin C, it seems reasonable to check whether it can protect against DNA-damaging effects of antitumor drugs. In the present work the ability of vitamin C to modulate cytotoxic and genotoxic effects of a cisplatin analog, conjugate (NH3)2Pt(SeO3), in terms of cell viability, DNA damage and repair in human lymphocytes was examined using the trypan blue exclusion test and the alkaline comet assay, respectively. The conjugate evoked a concentration-dependent decrease in the cell viability, reaching nearly 50% at 250 μM. (NH3)2Pt(SeO3) at 1, 10 and 30 μM caused DNA strand breaks, measured as the increase in the comet tail moment of the lymphocytes. The treated cells were able to recover within a 30-min incubation in a drug-free medium at 37°C. Vitamin C at 10 and 50 μM diminished the extent of DNA damage evoked by (NH3)2Pt(SeO3) but had no effect on the kinetics of DNA repair. The vitamin did not directly inactivate the conjugate. Lymphocytes treated with endonuclease III, which recognises oxidised pyrimidines, displayed a greater tail moment than those untreated with the enzyme, suggesting that the damages induced by the drug have, at least in part, an oxidative origin. Vitamin C can be considered a potential protective agent against side effects of antitumor drugs, but further research with both normal and cancer cells are needed to clarify this point.
Źródło:
Acta Biochimica Polonica; 2001, 48, 1; 233-240
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mismatch dependent uracil/thymine-DNA glycosylases excise exocyclic hydroxyethano and hydroxypropano cytosine adducts.
Autorzy:
Borys-Brzywczy, Ewa
Arczewska, Katarzyna
Saparbaev, Murat
Hardeland, Ulrike
Schär, Primo
Kuśmierek, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/1041473.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
base excision repair
E. coli mismatch uracil-DNA glycosylase
exocyclic cytosine adducts
human thymine-DNA glycosylase
S. pombe Thp1p glycosylase
Opis:
Exocyclic adducts of DNA bases, such as etheno- and hydroxyalkano- ones, are generated by a variety of bifunctional agents, including endogenously formed products of lipid peroxidation. In this work we selectively modified cytosines in the 5'-d(TTT TTT CTT TTT CTT TTT CTT TTT T)-3' oligonucleotide using: chloroacetaldehyde to obtain 3,N4-α-hydroxyethano- (HEC) and 3,N4-etheno- (εC), acrolein to obtain 3,N4-α-hydroxypropano- (HPC) and crotonaldehyde to obtain 3,N4-α-hydroxy-γ-methylpropano- (mHPC) adducts of cytosine. The studied adducts are alkali-labile which results in oligonucleotide strain breaks at the sites of modification upon strong base treatment. The oligonucleotides carrying adducted cytosines were studied as substrates of Escherichia coli Mug, human TDG and fission yeast Thp1p glycosylases. All the adducts studied are excised by bacterial Mug although with various efficiency: εC >HEC >HPC >mHPC. The yeast enzyme excises efficiently εC ł HEC >HPC, whereas the human enzyme excises only εC. The pH-dependence curves of excision of εC, HEC and HPC by Mug are bell shaped and the most efficient excision of adducts occurs within the pH range of 8.6-9.6. The observed increase of excision of HEC and HPC above pH 7.2 can be explained by deprotonation of these adducts, which are high pKa compounds and exist in a protonated form at neutrality. On the other hand, since εC is in a neutral form in the pH range studied, we postulate an involvement of an additional catalytic factor. We hypothesize that the enzyme structure undergoes a pH-induced rearrangement allowing the participation of Lys68 of Mug in catalysis via a hydrogen bond interaction of its ε-amino group with N4 of the cytosine exocyclic adducts.
Źródło:
Acta Biochimica Polonica; 2005, 52, 1; 149-165
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonhomologous end-joining deficiency of L5178Y-S cells is not associated with mutation in the ABCDE autophosphorylation cluster
Autorzy:
Brzóska, Kamil
Kruszewski, Marcin
Szumiel, Irena
Powiązania:
https://bibliotekanauki.pl/articles/1041297.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
mouse lymphoma L5178Y
nonhomologous end-joining
autophosphorylation
DNA-dependent protein kinase
double strand break repair
Opis:
Cells with mutated autophosphorylation sites in the ABCDE cluster of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are defective in the repair of ionising radiation-induced DSB, but show in an in vitro test the same DNA-PK activity as the cells possessing wild type enzyme. Nevertheless, the mutated DNA-PK is able to undergo ATP-dependent autophosphorylation and inactivation. This characteristics correspond well with the phenotypic features of the L5178Y-S (LY-S) cell line that is defective in DSB repair, shows a pronounced G1 phase radiosensitivity, but in which the level of DNA-PK activity present in total cell extracts is similar to that of its radioresistant counterpart L5178Y-R (LY-R) cell line. The purpose of this work was to examine the possible alterations in the sequence encoding the cluster of autophosphorylation sites in the DNA-dependent protein kinase in LY-S cells. Despite the presence of phenotypic features indicating the possibility of such alterations, no differences were found between the sequences coding for the autophosphorylation sites in L5178Y-R and L5178Y-S cells. In conclusion, the repair defect in LY-S cells is not related to the structure of the DNA-PK autophosphorylation sites (ABCDE casette).
Źródło:
Acta Biochimica Polonica; 2006, 53, 1; 233-236
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Polimorfizm genów kodujących białka naprawy DNA a zawodowe i środowiskowe narażenie na ołów, arsen i pestycydy
Polymorphism of genes encoding proteins of DNA repair vs. occupational and environmental exposure to lead, arsenic and pesticides
Autorzy:
Bukowski, Karol
Woźniak, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/2162666.pdf
Data publikacji:
2018-03-09
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
polimorfizm genetyczny
arsen
pestycydy
ołów
uszkodzenia DNA
geny naprawy DNA
genetic polymorphism
arsenic
pesticides
lead
DNA damage
DNA repair genes
Opis:
Polimorfizm genetyczny wiąże się z występowaniem w populacji co najmniej 2 różnych alleli w danym locus z częstością większą niż 1%. Wyróżniamy m.in. polimorfizm pojedynczego nukleotydu (single nucleotide polymorphism – SNP) i polimorfizm zmiennej liczby powtórzeń tandemowych. Występowanie określonych polimorfizmów w genach kodujących enzymy naprawy DNA jest związane z szybkością i wydajnością naprawy DNA oraz może chronić lub narażać daną osobę na skutki działania określonego ksenobiotyku. Związki chemiczne takie, jak ołów, arsen i pestycydy odznaczają się dużą toksycznością. Opisano wiele różnych polimorfizmów genów kodujących enzymy naprawy DNA, które mają wpływ na skuteczność naprawy uszkodzeń DNA indukowanych przez te ksenobiotyki. W przypadku ołowiu zbadano wpływ polimorfizmów genów: APE1 (apurinic/apyrimidinic endonuclease 1 – endonukleaza miejsca apurynowego/apirymidynowego) (rs1130409), hOGG1 (human 8-oxoguanine glycosylase – glikozylaza 8-oksyguaniny) (rs1052133), XRCC1 (X-ray repair cross-complementing protein group 1 – białko biorące udział w naprawie DNA przez wycinanie zasad) (rs25487), XRCC1 (rs1799782) oraz XRCC3 (X-ray repair cross-complementing protein group 3 – białko biorące udział w naprawie DNA przez rekombinację homologiczną) (rs861539). Dla arsenu przedstawiono w niniejszej pracy wyniki badań dotyczących następujących polimorfizmów: ERCC2 (excision repair cross-complementing – białko biorące udział w naprawie DNA przez wycinanie nukleotydów) (rs13181), XRCC3 (rs861539), APE1 (rs1130409) oraz hOGG1 (rs1052133). W odniesieniu do pestycydów w pracy przedstawiono zarówno osobny, jak i łączny wpływ polimorfizmów genów takich, jak XRCC1 (rs1799782), hOGG1 (rs1052133), XRCC4 (X-ray repair cross-complementing protein group 4 – białko biorące udział w naprawie DNA przez łączenie końców niehomologicznych) (rs28360135) i genu kodującego enzym detoksykacyjny paraoksonazę PON1 (paraoxonase 1) (rs662). Med. Pr. 2018;69(2):225–235
Genetic polymorphism is associated with the occurrence of at least 2 different alleles in the locus with a frequency higher than 1% in the population. Among polymorphisms we can find single nucleotide polymorphism (SNP) and polymorphism of variable number of tandem repeats. The presence of certain polymorphisms in genes encoding DNA repair enzymes is associated with the speed and efficiency of DNA repair and can protect or expose humans to the effects provoked by xenobiotics. Chemicals, such as lead, arsenic pesticides are considered to exhibit strong toxicity. There are many different polymorphisms in genes encoding DNA repair enzymes, which determine the speed and efficiency of DNA damage repair induced by these xenobiotics. In the case of lead, the influence of various polymorphisms, such as APE1 (apurinic/apyrimidinic endonuclease 1) (rs1130409), hOGG1 (human 8-oxoguanine glycosylase) (rs1052133), XRCC1 (X-ray repair cross-complementing protein group 1) (rs25487), XRCC1 (rs1799782) and XRCC3 (X-ray repair cross-complementing protein group 3) (rs861539) were described. For arsenic polymorphisms, such as ERCC2 (excision repair cross-complementing) (rs13181), XRCC3 (rs861539), APE1 (rs1130409) and hOGG1 (rs1052133) were examined. As to pesticides, separate and combined effects of polymorphisms in genes encoding DNA repair enzymes, such as XRCC1 (rs1799782), hOGG1 (rs1052133), XRCC4 (X-ray repair cross-complementing protein group 4) (rs28360135) and the gene encoding the detoxification enzyme PON1 paraoxonase (rs662) were reported. Med Pr 2018;69(2):225–235
Źródło:
Medycyna Pracy; 2018, 69, 2; 225-235
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of ionizing radiation in studies of biomarkers of individual susceptibility
Autorzy:
Cebulska-Wasilewska, A.
Powiązania:
https://bibliotekanauki.pl/articles/147794.pdf
Data publikacji:
2005
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
biomarkers
susceptibility
application of radiation
DNA repair
Opis:
Human biomonitoring, as a tool to identify health risk from environmental exposures, has gained increasing interest especially in the areas of cancer risk assessment and diseases treatment. Chromosome aberrations resulting from direct DNA breakage or from inhibition of DNA repair or synthesis, measured in peripheral blood lymphocytes, have been used successfully in the assessment of health risk associated to environmental genotoxic exposures. A faster but sensitive and reliable method for detection of DNA damage, or DNA repair capacity, might be crucial to many fields from molecular epidemiology and toxicology to preventive and clinical medicine. There are reports that results of DNA measures with the use of single cell gel electrophoresis (SCGE) correlate, on the one hand, with physical measures of genotoxins, and on the other hand, with cytogenetic damage that is a biomarker associated to the alteration of the health risk. This review is based on studies in which exposure to radiation was applied as a challenging treatment and DNA damage induced and repaired was analyzed with the use of the alkaline version of SCGE assay. Results from studies on susceptibilities and repair competence carried out in various groups of exposed workers, controls, and cancer patients (more than 700 donors) show variability between donors both in a response to challenging treatment and in the efficiency of repair process. Influences of the occupational exposures and factors depending on genotypes or life style on cellular capacities are observed. Discussed results suggest that study in vitro with the challenging cells by radiation exposure and measuring, with the SCGE assay, the DNA damage before and after repair, may develop a good biomarker of the individual susceptibility to various genotoxins and exposures (environmental, occupational, therapeutic). Such a biomarker may have a potential use in a molecular epidemiology and preclinical identification.
Źródło:
Nukleonika; 2005, 50,suppl.2; 3-8
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mutations in DNA polymerase gamma cause error prone DNA synthesis in human mitochondrial disorders
Autorzy:
Copeland, William
Ponamarev, Mikhail
Nguyen, Dinh
Kunkel, Thomas
Longley, Matthew
Powiązania:
https://bibliotekanauki.pl/articles/1043659.pdf
Data publikacji:
2003
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
aging
DNA replication
mitochondria
DNA repair
DNA polymerase
Opis:
This paper summarizes recent advances in understanding the links between the cell's ability to maintain integrity of its mitochondrial genome and mitochondrial genetic diseases. Human mitochondrial DNA is replicated by the two-subunit DNA polymerase γ (pol γ). We investigated the fidelity of DNA replication by pol γ with and without exonucleolytic proofreading and its p55 accessory subunit. Pol γ has high base substitution fidelity due to efficient base selection and exonucleolytic proofreading, but low frameshift fidelity when copying homopolymeric sequences longer than four nucleotides. Progressive external ophthalmoplegia (PEO) is a rare disease characterized by the accumulation of large deletions in mitochondrial DNA. Recently, several mutations in the polymerase and exonuclease domains of the human pol γ have been shown to be associated with PEO. We are analyzing the effect of these mutations on the human pol γ enzyme. In particular, three autosomal dominant mutations alter amino acids located within polymerase motif B of pol γ. These residues are highly conserved among family A DNA polymerases, which include T7 DNA polymerase and E. coli pol I. These PEO mutations have been generated in pol γ to analyze their effects on overall polymerase function as well as the effects on the fidelity of DNA synthesis. One mutation in particular, Y955C, was found in several families throughout Europe, including one Belgian family and five unrelated Italian families. The Y955C mutant pol γ retains a wild-type catalytic rate but suffers a 45-fold decrease in apparent binding affinity for the incoming dNTP. The Y955C derivative is also much less accurate than is wild-type pol γ, with error rates for certain mismatches elevated by 10- to 100-fold. The error prone DNA synthesis observed for the Y955C pol γ is consistent with the accumulation of mtDNA mutations in patients with PEO. The effects of other pol γ mutations associated with PEO are discussed.
Źródło:
Acta Biochimica Polonica; 2003, 50, 1; 155-167
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Obg subfamily of bacterial GTP-binding proteins: essential proteins of largely unknown functions that are evolutionarily conserved from bacteria to humans.
Autorzy:
Czyż, Agata
Węgrzyn, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/1041458.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
ribosomes
small GTP-binding proteins
gene expression
DNA repair
chromosomal functions
Opis:
Members of the Obg subfamily of small GTP-binding proteins (called Obg, CgtA, ObgE or YhbZ in different bacterial species) have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Although serious changes in phenotypes are observed in mutant bacteria devoid of Obg or its homologues, specific roles of these GTP-binding proteins remain largely unknown. Recent genetic and biochemical studies, as well as determination of the structures of Obg proteins from Bacillus subtilis and Thermus thermophilus, shed new light on the possible functions of the members of the Obg subfamily and may constitute a starting point for the elucidation of their exact biological role.
Źródło:
Acta Biochimica Polonica; 2005, 52, 1; 35-43
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effects of an antimutagen of 1,4-dihydropyridine series on cell survival and DNA damage in L5178Y murine sublines
Autorzy:
Dalivelya, O.
Savina, N.
Kuzhir, T.
Buraczewska, I.
Wojewódzka, M.
Szumiel, I.
Powiązania:
https://bibliotekanauki.pl/articles/146264.pdf
Data publikacji:
2006
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
1,4-dihydropyridine
DNA repair
neutral comet assay
L5178Y cells
cytotoxicity
radioprotective effect
Opis:
In a series of studies it was shown that 1,4-dihydropyridine derivatives (1,4-DHP) show antimutagenic and anticlastogenic properties and accelerate repair of oxidant and ionising radiation generated DNA damage. Here, effects of one of 1,4-DHP compounds (sodium 3,5-bis-ethoxycarbonyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate denoted as DHP) in X-irradiated L5178Y cells (murine lymphoma sublines, LY-R and LY-S) are reported. DHP treatment 1 h before, during and after X-irradiation gave a radioprotective effect in double strand break (DSB) repair competent LY-R cells: there was an increase in post-irradiation proliferation and cell viability as well as a slight acceleration of break rejoining as measured by the neutral comet assay. In the radiosensitive LY-S cells with impaired non-homologous end-joining system, the radioprotective effect was seen as enhanced growth and viability. There was, however, no effect on the DSB repair rate. Notably, there was no dependence of the biological effects on DHP concentration in the range of concentrations studied (1 nM - 100 mM), suggesting an all-or-none effect, as in cellular signaling induction observed in radioadaptation or bystander effect. We assume that DHP acts by decreasing fixation of radiation inflicted DNA damage, among others, by increasing the rate of DNA repair and enhancing the efficiency of checkpoint control. Direct confirmation of this assumption is necessary.
Źródło:
Nukleonika; 2006, 51, 3; 141-146
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies