Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Cohen forcing" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Almost disjoint families and property (a)
Autorzy:
Szeptycki, Paul
Vaughan, Jerry
Powiązania:
https://bibliotekanauki.pl/articles/1205285.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
property (a), density
extent
almost disjoint families
Ψ-space
CH
GCH
Martin's Axiom
$\got p = \got c$
Cohen forcing
Q-set
weakly inaccessible cardinal.
Opis:
We consider the question: when does a Ψ-space satisfy property (a)? We show that if $|A| < \got p$ then the Ψ-space Ψ(A) satisfies property (a), but in some Cohen models the negation of CH holds and every uncountable Ψ-space fails to satisfy property (a). We also show that in a model of Fleissner and Miller there exists a Ψ-space of cardinality $\got p$ which has property (a). We extend a theorem of Matveev relating the existence of certain closed discrete subsets with the failure of property (a).
Źródło:
Fundamenta Mathematicae; 1998, 158, 3; 229-240
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dominating analytic families
Autorzy:
Kamburelis, Anastasis
Powiązania:
https://bibliotekanauki.pl/articles/1205372.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
measure algebra
Cohen algebra
Suslin c.c.c. forcing
distributivity
Opis:
Let A be an analytic family of sequences of sets of integers. We show that either A is dominated or it contains a continuum of almost disjoint sequences. From this we obtain a theorem by Shelah that a Suslin c.c.c. forcing adds a Cohen real if it adds an unbounded real.
Źródło:
Fundamenta Mathematicae; 1998, 156, 1; 73-83
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies