Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Clustering, Genetic Algorithm" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Software Systems Clustering Using Estimation of Distribution Approach
Autorzy:
Tajgardan, M.
Izadkhah, H.
Lotfi, S.
Powiązania:
https://bibliotekanauki.pl/articles/108635.pdf
Data publikacji:
2016
Wydawca:
Społeczna Akademia Nauk w Łodzi
Tematy:
Software System
Clustering, Genetic Algorithm
Estimation of Distribution Algorithm (EDA)
Probability Model
Opis:
Software clustering is usually used for program understanding. Since the software clustering is a NP-complete problem, a number of Genetic Algorithms (GAs) are proposed for solving this problem. In literature, there are two wellknown GAs for software clustering, namely, Bunch and DAGC, that use the genetic operators such as crossover and mutation to better search the solution space and generating better solutions during genetic algorithm evolutionary process. The major drawbacks of these operators are (1) the difficulty of defining operators, (2) the difficulty of determining the probability rate of these operators, and (3) do not guarantee to maintain building blocks. Estimation of Distribution (EDA) based approaches, by removing crossover and mutation operators and maintaining building blocks, can be used to solve the problems of genetic algorithms. This approach creates the probabilistic models from individuals to generate new population during evolutionary process, aiming to achieve more success in solving the problems. The aim of this paper is to recast EDA for software clustering problems, which can overcome the existing genetic operators’ limitations. For achieving this aim, we propose a new distribution probability function and a new EDA based algorithm for software clustering. To the best knowledge of the authors, EDA has not been investigated to solve the software clustering problem. The proposed EDA has been compared with two well-known genetic algorithms on twelve benchmarks. Experimental results show that the proposed approach provides more accurate results, improves the speed of convergence and provides better stability when compared against existing genetic algorithms such as Bunch and DAGC.
Źródło:
Journal of Applied Computer Science Methods; 2016, 8 No. 2; 99-113
1689-9636
Pojawia się w:
Journal of Applied Computer Science Methods
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Genetic algorithm for clustering, finding the number of clusters
Autorzy:
Śmigielski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/1373528.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
Tematy:
genetic algorithm
clustering
variable length chromosome
cube
Opis:
In this paper a genetic algorithm for clustering is proposed. The algorithm is based on the variable length chromosomes and the notion of local points density in the clustered set. Its role is to identify the number of clusters in the clustered set and to partition this set into particular clusters. The tests were conducted for two different sets of two dimensional data. The algorithm performed well in both cases. The tests presented the ability of the algorithm to partition the subsets combined with the thin dense area into separate clusters.
Źródło:
Schedae Informaticae; 2011, 20; 101-113
0860-0295
2083-8476
Pojawia się w:
Schedae Informaticae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recognizing Sets in Evolutionary Multiobjective Optimization
Autorzy:
Gajda-Zagórska, E.
Powiązania:
https://bibliotekanauki.pl/articles/308467.pdf
Data publikacji:
2012
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
basin of attraction
clustering
genetic algorithm
multiobjective optimization
Opis:
Among Evolutionary Multiobjective Optimization Algorithms (EMOA) there are many which find only Paretooptimal solutions. These may not be enough in case of multimodal problems and non-connected Pareto fronts, where more information about the shape of the landscape is required. We propose a Multiobjective Clustered Evolutionary Strategy (MCES) which combines a hierarchic genetic algorithm consisting of multiple populations with EMOA rank selection. In the next stage, the genetic sample is clustered to recognize regions with high density of individuals. These regions are occupied by solutions from the neighborhood of the Pareto set. We discuss genetic algorithms with heuristic and the concept of well-tuning which allows for theoretical verification of the presented strategy. Numerical results begin with one example of clustering in a single-objective benchmark problem. Afterwards, we give an illustration of the EMOA rank selection in a simple two-criteria minimization problem and provide results of the simulation of MCES for multimodal, multi-connected example. The strategy copes with multimodal problems without losing local solutions and gives better insight into the shape of the evolutionary landscape. What is more, the stability of solutions in MCES may be analyzed analytically.
Źródło:
Journal of Telecommunications and Information Technology; 2012, 1; 74-82
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improving Population-Based Algorithms with Fitness Deterioration
Autorzy:
Wolny, A.
Schaefer, R.
Powiązania:
https://bibliotekanauki.pl/articles/308437.pdf
Data publikacji:
2011
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
basin of attraction
clustering
fitness deterioration
genetic algorithm
optics
sequential niching
Opis:
This work presents a new hybrid approach for supporting sequential niching strategies called Cluster Supported Fitness Deterioration (CSFD). Sequential niching is one of the most promising evolutionary strategies for analyzing multimodal global optimization problems in the continuous domains embedded in the vector metric spaces. In each iteration CSFD performs the clustering of the random sample by OPTICS algorithm and then deteriorates the fitness on the area occupied by clusters. The selection pressure pushes away the next-step sample (population) from the basins of attraction of minimizers already recognized, speeding up finding the new ones. The main advantages of CSFD are low memory an computational complexity even in case of large dimensional problems and high accuracy of deterioration obtained by the flexible cluster definition delivered by OPTICS. The paper contains the broad discussion of niching strategies, detailed definition of CSFD and the series of the simple comparative tests.
Źródło:
Journal of Telecommunications and Information Technology; 2011, 4; 31-44
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of traveling salesman problem using affinity propagation clustering and genetic algorithm
Autorzy:
El-Samak, A. F.
Ashour, W.
Powiązania:
https://bibliotekanauki.pl/articles/91810.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
combinatorial optimization problem
travel salesman problem
genetic algorithm
evolutionary computation algorithm
affinity propagation clustering technique
AP
problem optymalizacji kombinatorycznej
algorytm genetyczny
obliczenia ewolucyjne
Opis:
Combinatorial optimization problems, such as travel salesman problem, are usually NPhard and the solution space of this problem is very large. Therefore the set of feasible solutions cannot be evaluated one by one. The simple genetic algorithm is one of the most used evolutionary computation algorithms, that give a good solution for TSP, however, it takes much computational time. In this paper, Affinity Propagation Clustering Technique (AP) is used to optimize the performance of the Genetic Algorithm (GA) for solving TSP. The core idea, which is clustering cities into smaller clusters and solving each cluster using GA separately, thus the access to the optimal solution will be in less computational time. Numerical experiments show that the proposed algorithm can give a good results for TSP problem more than the simple GA.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 4; 239-245
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Molecular characterization of Iranian black cumin (Nigella sativa L.) accessions using RAPD marker
Autorzy:
Neghab, M.G.
Panahi, B.
Powiązania:
https://bibliotekanauki.pl/articles/81098.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
black cumin
Nigella sativa
Iranian black cumin
Ranunculaceae
flowering plant
RAPD marker
genetic variation
polymorphism
UPGMA method
clustering algorithm
cluster analysis
Źródło:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2017, 98, 2
0860-7796
Pojawia się w:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies