Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Church-Turing Thesis" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Semantics and symbol grounding in Turing machine processes
Autorzy:
Sarosiek, Anna
Powiązania:
https://bibliotekanauki.pl/articles/429109.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Papieski Jana Pawła II w Krakowie
Tematy:
Steven Harnad
symbolic system
semantic system
symbol grounding problem
Turing machine
Turing test
Church-Turing Thesis
artificial intelligent
cognition
Opis:
The aim of the paper is to present the underlying reason of the unsolved symbolgrounding problem. The Church-Turing Thesis states that a physical problem,for which there is an algorithm of solution, can be solved by a Turingmachine, but machine operations neglect the semantic relationship betweensymbols and their meaning. Symbols are objects that are manipulated on rulesbased on their shapes. The computations are independent of the context, mentalstates, emotions, or feelings. The symbol processing operations are interpretedby the machine in a way quite different from the cognitive processes.Cognitive activities of living organisms and computation differ from each other,because of the way they act in the real word. The result is the problem ofmutual understanding of symbol grounding.
Źródło:
Semina Scientiarum; 2017, 16
1644-3365
Pojawia się w:
Semina Scientiarum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Anti-Mechanist Argument Based on Gödel’s Incompleteness Theorems, Indescribability of the Concept of Natural Number and Deviant Encodings
Autorzy:
Quinon, Paula
Powiązania:
https://bibliotekanauki.pl/articles/1796973.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Semiotyczne
Tematy:
the Lucas-Penrose argument
the Church-Turing thesis
Carnapian expli-cations
natural numbers
computation
conceptual engineering
conceptual fixed points
conceptual vicious circles
deviant encodings
structuralism
Opis:
This paper reassesses the criticism of the Lucas-Penrose anti-mechanist argument, based on Gödel’s incompleteness theorems, as formulated by Krajewski (2020): this argument only works with the additional extra-formal assumption that “the human mind is consistent”. Krajewski argues that this assumption cannot be formalized, and therefore that the anti-mechanist argument – which requires the formalization of the whole reasoning process – fails to establish that the human mind is not mechanistic. A similar situation occurs with a corollary to the argument, that the human mind allegedly outperforms machines, because although there is no exhaustive formal definition of natural numbers, mathematicians can successfully work with natural numbers. Again, the corollary requires an extra-formal assumption: “PA is complete” or “the set of all natural numbers exists”. I agree that extra-formal assumptions are necessary in order to validate the anti-mechanist argument and its corollary, and that those assumptions are problematic. However, I argue that formalization is possible and the problem is instead the circularity of reasoning that they cause. The human mind does not prove its own consistency, and outperforms the machine, simply by making the assumption “I am consistent”. Starting from the analysis of circularity, I propose a way of thinking about the interplay between informal and formal in mathematics.
Źródło:
Studia Semiotyczne; 2020, 34, 1; 243-266
0137-6608
Pojawia się w:
Studia Semiotyczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gödel’s Philosophical Challenge (to Turing)
Autorzy:
Sieg, Wilfried
Powiązania:
https://bibliotekanauki.pl/articles/1796958.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Semiotyczne
Tematy:
computability
Church's Thesis
Turing's Thesis
incompleteness
undecid-ability
Post production systems
computable dynamical systems
Opis:
The incompleteness theorems constitute the mathematical core of Gödel’s philosophical challenge. They are given in their “most satisfactory form”, as Gödel saw it, when the formality of theories to which they apply is characterized via Turing machines. These machines codify human mechanical procedures that can be carried out without appealing to higher cognitive capacities. The question naturally arises, whether the theorems justify the claim that the human mind has mathematical abilities that are not shared by any machine. Turing admits that non-mechanical steps of intuition are needed to transcend particular formal theories. Thus, there is a substantive point in comparing Turing’s views with Gödel’s that is expressed by the assertion, “The human mind infinitely surpasses any finite machine”. The parallelisms and tensions between their views are taken as an inspiration for beginning to explore, computationally, the capacities of the human mathematical mind.
Źródło:
Studia Semiotyczne; 2020, 34, 1; 57-80
0137-6608
Pojawia się w:
Studia Semiotyczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies