Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bayesian prediction" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Robust Bayesian Prediction with Asymmetric Loss Function in Poisson Model of Insurance Risk
Odporna predykcja bayesowska przy asymetrycznej funkcji straty w modelu Poissona dla ryzyka ubezpieczeniowego
Autorzy:
Boratyńska, Agata
Powiązania:
https://bibliotekanauki.pl/articles/905699.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Bayesian prediction
Bayesian robustness
LINEX loss
family of priors
collective risk model
Opis:
In robust Bayesian analysis a prior is assumed to belong to a family instead of being specified exactly. The multiplicity of priors leads to a collection of Bayes actions. It is clearly essential to be able to recommend one action (estimate, predictor) from this set. We consider the problem of robust Bayesian prediction of a Poisson random variable under LINEX loss. Some uncertainty about the prior is assumed by introducing three classes of conjugate priors. The conditional Г-minimax predictors and posterior regret Г-minimax predictors are constructed. The application to the collective risk model is presented.
W odpornej analizie bayesowskiej rozkład a priori nie jest dokładnie wyznaczony, ale należy do pewnej rodziny Г rozkładów a priori. Przy takim założeniu otrzymujemy również rodzinę decyzji bayesowskich. Celem jest natomiast wybór jednej reguły „optymalnej”. W artykule rozważany jest problem odpornej predykcji bayesowskiej zmiennej losowej o rozkładzie Poissona przy lunkcji straty LINEX. Niedokładność w wyznaczeniu rozkładu a priori modeluje się za pomocą trzech rodzin rozkładów a priori. Wyznaczamy predyktor warunkowo Г-minimaksowy i predyktor o Г-minimaksowej utracie a posteriori. Podajemy zastosowania w kolektywnym modelu ryzyka.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2006, 196
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bayesian estimation and prediction based on Rayleigh record data with applications
Autorzy:
Awwad, Raed R. Abu
Bdair, Omar M.
Abufoudeh, Ghassan K.
Powiązania:
https://bibliotekanauki.pl/articles/1827533.pdf
Data publikacji:
2021-09-06
Wydawca:
Główny Urząd Statystyczny
Tematy:
Bayesian estimation and prediction
Rayleigh distribution
record values
Markov Chain Monte Carlo samples
Opis:
Based on a record sample from the Rayleigh model, we consider the problem of estimating the scale and location parameters of the model and predicting the future unobserved record data. Maximum likelihood and Bayesian approaches under different loss functions are used to estimate the model's parameters. The Gibbs sampler and Metropolis-Hastings methods are used within the Bayesian procedures to draw the Markov Chain Monte Carlo (MCMC) samples, used in turn to compute the Bayes estimator and the point predictors of the future record data. Monte Carlo simulations are performed to study the behaviour and to compare methods obtained in this way. Two examples of real data have been analyzed to illustrate the procedures developed here.
Źródło:
Statistics in Transition new series; 2021, 22, 3; 59-79
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Conversion timing of seafarer’s decision-making for unmanned ship navigation
Autorzy:
Zhang, R. L.
Furusho, M.
Powiązania:
https://bibliotekanauki.pl/articles/116734.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
maritime safety
unmanned ship
unmanned ship navigation
on-board decision-making
decision-making algorithm
conversion timing
bayesian risk prediction
seafarers
Opis:
The aim of this study is to construct an unmanned ship swarms monitoring model to improve autonomous decision-making efficiency and safety performance of unmanned ship navigation. A framework is proposed to determine the relationship between on-board decision-making and shore side monitoring, the process of ship data detection, tracking, analysis and loss, and the application of decision-making algorithm, to discuss the different risk responses of specific unmanned ship types under various latent hazard environments, particularly in terms of precise conversion timing in switching over to remote control and full manual monitoring, to ensure safe navigation when the capability of automatic risk response inadequate. This frame-work makes it easier to train data and the adjustment for machine learning based on Bayesian risk prediction. It can be concluded that the automation level can be increased and the workload of shore-based seafarers can be reduced easily.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2017, 11, 3; 463-468
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci bayesowskich do prognozowania bankructwa firm
Bankruptcy prediction with Bayesian networks
Autorzy:
Gąska, Damian
Powiązania:
https://bibliotekanauki.pl/articles/434020.pdf
Data publikacji:
2016
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
bankruptcy prediction
Bayesian network
structure learning
Opis:
The aim of the paper is to compare accuracy of some bankruptcy prediction models based on Bayesian networks. Some network structure learning algorithms were analyzed as a tool for classifiers construction. Empirical analysis was applied to companies listed on Warsaw Stock Exchange. The paper gives short overview of theoretical background behind discussed issues and presents results of empirical analysis.
Źródło:
Śląski Przegląd Statystyczny; 2016, 14 (20); 131-144
1644-6739
Pojawia się w:
Śląski Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sufficiency in bayesian models
Autorzy:
Furmańczyki, Konrad
Niemiro, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/1339087.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
sufficiency
connditional independence
Bayesian models
prediction sufficiency
freedom
Opis:
We consider some fundamental concepts of mathematical statistics in the Bayesian setting. Sufficiency, prediction sufficiency and freedom can be treated as special cases of conditional independence. We give purely probabilistic proofs of the Basu theorem and related facts.
Źródło:
Applicationes Mathematicae; 1998-1999, 25, 1; 113-120
1233-7234
Pojawia się w:
Applicationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A fuzzy KNN-based model for significant wave height prediction in large lakes
Autorzy:
Nikoo, M.R.
Kerachian, R.
Alizadeh, M.R.
Powiązania:
https://bibliotekanauki.pl/articles/48113.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
wave height
prediction
fuzzy set theory
lake
Bayesian network
support vector regression
Źródło:
Oceanologia; 2018, 60, 2
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Probabilistyczne modele zjawisk przestrzennych w rolnictwie
Probabilistic models of spatial phenomena in agriculture
Autorzy:
Marciniak, A.
Powiązania:
https://bibliotekanauki.pl/articles/291394.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
system informacji przestrzennej
GIS
probabilistyczna predykcja
probabilistyczna interpolacja
obiekt przestrzenny
sieci bayesowskie
probabilistic prediction
approximation prediction
spatial objects
Bayesian networks
Opis:
Niepewność, zarówno stochastyczna jak i epistemiczna, obecna w modelach zjawisk czaso-przestrzennych w rolnictwie uzasadnia zastosowanie metod probabilistycznych predykcji, wyjaśnianiu i aproksymacji obiektów przestrzennych. Z metodologicznego, obliczeniowego i inferencyjnego punktu widzenia odpowiednią technologią modelowania są tu sieci bayesowskie traktowane jako systemy reprezentacji wiedzy. W takim ujęciu modelowanie sprowadza się do translacji wiedzy z języka naturalnego na formalny i wykonywalny język sieci bayerowskich. Logiczną spójność i efektywność takiego rozumienia procesu modelowania pokazano na przykładzie budowy modelu aproksymacji i predykcji plonu pszenicy.
Uncertainty, both stochastic and epistemic, occurring in models of space-time phenomena in agriculture justifies application of probabilistic methods in predication, clarifying and approximation of spatial objects. From methodological, computational and inferential point of view, in this case proper modelling technologies include Bayesian networks treated as knowledge representation systems. From this perspective modelling comes down to translation of knowledge from natural language to formal and executable language of Bayesian networks. Logical coherence and effectiveness of this definition of modelling process is shown on the example of building a model of wheat crop approximation and prediction.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 5, 5; 193-199
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of mortality rates in heart failure patients with data mining methods
Autorzy:
Bohacik, J.
Kambhampati, C.
Davis, D. N.
Cleland, J. G. F.
Powiązania:
https://bibliotekanauki.pl/articles/908867.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
heart failure
data mining
prediction of mortality rates
home telemonitoring
Bayesian network method
decision tree method
neural network method
nearest neighbour method
Opis:
Heart failure is one of the severe diseases which menace the human health and affect millions of people. Half of all patients diagnosed with heart failure die within four years. For the purpose of avoiding life-threatening situations and minimizing the costs, it is important to predict mortality rates of heart failure patients. As part of a HEIF-5 project, a data mining study was conducted aiming specifically at extracting new knowledge from a group of patients suffering from heart failure and using it for prediction of mortality rates. The methodology of knowledge discovery in databases is analyzed within the framework of home telemonitoring. Several data mining methods such as a Bayesian network method, a decision tree method, a neural network method and a nearest neighbour method are employed. The accuracy for the data mining methods from the point of view of avoiding life-threatening situations and minimizing the costs is discussed. It seems that the decision tree method achieves the best accuracy results and is also interpretable for the clinicians.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica; 2013, 13, 1; 7-16
1732-1360
2083-3628
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies