Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bayesian econometric" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Bayesian combined forecasts and Monte Carlo simulations to improve inflation rate predictions in Romania
Autorzy:
Simionescu, Mihaela
Powiązania:
https://bibliotekanauki.pl/articles/692557.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Ekonomiczny w Poznaniu
Tematy:
forecasts accuracy
Bayesian forecasts combination
shrinkage parameter
econometric model
Opis:
In this paper we applied the regression approach and Bayesian inference to obtain more accurate forecasts of the inflation rate in the case of the Romanian economy. The necessity of using the most accurate forecasts for the inflation rate is required by the realisation of economic criteria for the accession to the eurozone and by the inflation targeting strategy of the National Bank of Romania. Considering the assumption that simple econometric models provide better forecasts than complex models, in this paper we combined various forecasts from individual models using as prior information the expectations of experts. The empirical findings for Romanian inflation rate forecasts over the horizon of 2016-2018 indicated that a fixed effects model performed better than other simple models (autoregressive moving average model, dynamic model, simple and multiple linear model, VAR, Bayesian VAR, simultaneous equations model). The Bayesian combined forecasts that used experts’ predictions as priors, with a shrinkage parameter tending to infinity, improved the accuracy of all predictions using individual models, outperforming also naïve forecasts and zero and equal weights forecasts. However, predictions based on Monte Carlo simulation outperformed all the scenarios in terms of the mean error and mean absolute error.  
Źródło:
Research Papers in Economics and Finance; 2020, 4, 1; 7-20
2543-6430
Pojawia się w:
Research Papers in Economics and Finance
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bayesian combined forecasts and Monte Carlo simulations to improve inflation rate predictions in Romania
Autorzy:
Simionescu, Mihaela
Powiązania:
https://bibliotekanauki.pl/articles/692571.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Ekonomiczny w Poznaniu
Tematy:
forecasts accuracy
Bayesian forecasts combination
shrinkage parameter
econometric model
Opis:
In this paper we applied the regression approach and Bayesian inference to obtain more accurate forecasts of the inflation rate in the case of the Romanian economy. The necessity of using the most accurate forecasts for the inflation rate is required by the realisation of economic criteria for the accession to the eurozone and by the inflation targeting strategy of the National Bank of Romania. Considering the assumption that simple econometric models provide better forecasts than complex models, in this paper we combined various forecasts from individual models using as prior information the expectations of experts. The empirical findings for Romanian inflation rate forecasts over the horizon of 2016-2018 indicated that a fixed effects model performed better than other simple models (autoregressive moving average model, dynamic model, simple and multiple linear model, VAR, Bayesian VAR, simultaneous equations model). The Bayesian combined forecasts that used experts’ predictions as priors, with a shrinkage parameter tending to infinity, improved the accuracy of all predictions using individual models, outperforming also naïve forecasts and zero and equal weights forecasts. However, predictions based on Monte Carlo simulation outperformed all the scenarios in terms of the mean error and mean absolute error.  
Źródło:
Research Papers in Economics and Finance; 2020, 4, 1; 7-20
2543-6430
Pojawia się w:
Research Papers in Economics and Finance
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weryfikacja odporno-bayesowskiego modelu alokacji dla różnych typów rozkładów - podejście symulacyjne
Verification of the Robust-Bayesian Asset Allocation Model for Different Types of Distribution - Simulation Approach
Autorzy:
Orwat-Acedańska, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/592595.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Ekonometria bayesowska
Modele bayesowskie
Modele ekonometryczne
Bayesian econometric
Bayesian models
Econometric models
Opis:
In the paper robust Bayesian allocation method was verified for different distributions of returns using simulation approach. An impact of estimation error on the portfolio risk was examined when portfolios were built as a solution to the problem of maximizing expected return with restrictions imposed on its variance. Classical Markowitz approach results were compared to the robust Bayesian approach. Using simulations it was shown that in robust Bayesian method a fraction of samples where a portfolio risk exceeded its maximum limit as well as mean excess risk were much lower than in the classic approach. Moreover extending robust allocation with Bayesian approach significantly affects the portfolio riskiness. This results also holds if the distribution of returns in nonnormal although the differences are smaller.
Źródło:
Studia Ekonomiczne; 2013, 135; 102-120
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies