Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bayesian algorithm" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Evolutionary algorithm for learning Bayesian structures from data
Autorzy:
Kozłowski, M.
Wierzchoń, S. T.
Powiązania:
https://bibliotekanauki.pl/articles/1986916.pdf
Data publikacji:
2002
Wydawca:
Politechnika Gdańska
Tematy:
Bayesian networks
structure learning
evolutionary algorithm
discrete optimization
Opis:
In this paper we report an evolutionary approach to learning Bayesian networks from data. We explain reasons, which advocate such a non-deterministic approach. We analyze weaknesses of previous works and come to conclusion that we should operate in the search space native for the problem i.e. in the space of directed acyclic graphs instead of standard space of binary strings. This requires adaptation of evolutionary methodology into very specific needs. We propose quite new data representation and implementation of generalized genetic operators and then we present an efficient algorithm capable of learning complex networks without additional assumptions. We discuss results obtained with this algorithm. The approach presented in this paper can be extended with the possibility to absorb some suggestions from experts or obtained by means of data preprocessing.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2002, 6, 3; 509-521
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evolutionary learning of rich neural networks in the Bayesian model selection framework
Autorzy:
Matteucci, M.
Spadoni, D.
Powiązania:
https://bibliotekanauki.pl/articles/907642.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa
model Bayesa
algorytm genetyczny
Rich Neural Networks
Bayesian model selection
genetic algorithm
Bayesian fitness
Opis:
In this paper we focus on the problem of using a genetic algorithm for model selection within a Bayesian framework. We propose to reduce the model selection problem to a search problem solved using evolutionary computation to explore a posterior distribution over the model space. As a case study, we introduce ELeaRNT (Evolutionary Learning of Rich Neural Network Topologies), a genetic algorithm which evolves a particular class of models, namely, Rich Neural Networks (RNN), in order to find an optimal domain-specific non-linear function approximator with a good generalization capability. In order to evolve this kind of neural networks, ELeaRNT uses a Bayesian fitness function. The experimental results prove that ELeaRNT using a Bayesian fitness function finds, in a completely automated way, networks well-matched to the analysed problem, with acceptable complexity.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 3; 423-440
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model klasyfikacji wiedzy w przedsiębiorstwie produkcyjnym przy zastosowaniu algorytmu Bayes’a
Autorzy:
Dudek, A.
Patalas-Maliszewska, J.
Powiązania:
https://bibliotekanauki.pl/articles/118404.pdf
Data publikacji:
2016
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
model klasyfikacji wiedzy
gromadzenie danych
algorytm Bayes’a
model knowledge classification
collect data
Bayesian algorithm
Opis:
W artykule podjęto próbę zbudowania modelu klasyfikacji wiedzy w przedsiębiorstwie produkcyjnym w oparciu o algorytm Bayes’a. Pozyskiwanie, gromadzenie i przechowywanie danych i informacji działu obsługi serwisowej, możliwe jest za pomocą autorskiej aplikacji, której struktura została również przedstawiona w niniejszym artykule. Na podstawie danych i informacji zawartych w zgłoszeniach serwisowych, rejestrowanych w aplikacji, możliwe jest generowanie zdefiniowanej wiedzy. W konsekwencji, proponowany model klasyfikacji wiedzy, przy zastosowaniu algorytmu Bayes’a, daje możliwość zbudowania zbiorów użytecznej wiedzy.
This article elaborates a model of knowledge classification using a Bayesian algorithm in a manufacturing company. Further was illustrated an application, that enables you to collect, search and analyze data and information from a service department. Based on the data and information registered in the application, it is possible to generate a defined knowledge. Consequently, the proposed model for the classification of knowledge, using a Bayesian algorithm gives the opportunity to build the sets of useful knowledge.
Źródło:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej; 2016, 9; 85-98
1897-7421
Pojawia się w:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Conversion timing of seafarer’s decision-making for unmanned ship navigation
Autorzy:
Zhang, R. L.
Furusho, M.
Powiązania:
https://bibliotekanauki.pl/articles/116734.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
maritime safety
unmanned ship
unmanned ship navigation
on-board decision-making
decision-making algorithm
conversion timing
bayesian risk prediction
seafarers
Opis:
The aim of this study is to construct an unmanned ship swarms monitoring model to improve autonomous decision-making efficiency and safety performance of unmanned ship navigation. A framework is proposed to determine the relationship between on-board decision-making and shore side monitoring, the process of ship data detection, tracking, analysis and loss, and the application of decision-making algorithm, to discuss the different risk responses of specific unmanned ship types under various latent hazard environments, particularly in terms of precise conversion timing in switching over to remote control and full manual monitoring, to ensure safe navigation when the capability of automatic risk response inadequate. This frame-work makes it easier to train data and the adjustment for machine learning based on Bayesian risk prediction. It can be concluded that the automation level can be increased and the workload of shore-based seafarers can be reduced easily.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2017, 11, 3; 463-468
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Falcon optimization algorithm for bayesian network structure learning
Autorzy:
Kareem, Shahab Wahhab
Okur, Mehmet Cudi
Powiązania:
https://bibliotekanauki.pl/articles/2097968.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Bayesian network
global search
falcon optimization algorithm
structure learning
search and score
Opis:
In machine-learning, some of the helpful scientific models during the production of a structure of knowledge are Bayesian networks. They can draw the relationships of probabilistic dependency among many variables. The score and search method is a tool that is used as a strategy for learning the structure of a Bayesian network. The authors apply the falcon optimization algorithm (FOA) to the learning structure of a Bayesian network. This paper has employed reversing, deleting, moving, and inserting to obtain the FOA for approaching the optimal solution of a structure. Essentially, the falcon prey search strategy is used in the FOA algorithm. The result of the proposed technique is associated with pigeon-inspired optimization, greedy search, and simulated annealing that apply the BDeu score function. The authors have also examined the performances of the confusion matrix of these techniques by utilizing several benchmark data sets. As shown by the experimental evaluations, the proposed method has a more reliable performance than other algorithms (including the production of excellent scores and accuracy values).
Źródło:
Computer Science; 2021, 22 (4); 553--569
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies