Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Banach contraction theorem" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
On weak solutions of functional-differential abstract nonlocal Cauchy problems
Autorzy:
Byszewski, Ludwik
Powiązania:
https://bibliotekanauki.pl/articles/1310788.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
abstract Cauchy problems
functional-differential equation
nonlocal conditions
weak solutions
existence
uniqueness
asympto tic stability
m-accretive operators
Banach contraction theorem
Opis:
The existence, uniqueness and asymptotic stability of weak solutions of functional-differential abstract nonlocal Cauchy problems in a Banach space are studied. Methods of m-accretive operators and the Banach contraction theorem are applied.
Źródło:
Annales Polonici Mathematici; 1996-1997, 65, 2; 163-170
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On a vector-valued local ergodic theorem in $L_∞$
Autorzy:
Sato, Ryotaro
Powiązania:
https://bibliotekanauki.pl/articles/1217311.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
vector-valued local ergodic theorem
reflexive Banach space
d-dimensional semigroup of linear contractions
contraction majorant
Opis:
Let $T = {T(u): u ∈ ℝ_d^{+}}$ be a strongly continuous d-dimensional semigroup of linear contractions on $L_1((Ω,Σ,μ);X)$, where (Ω,Σ,μ) is a σ-finite measure space and X is a reflexive Banach space. Since $L_1((Ω,Σ,μ);X)* = L_∞((Ω,Σ,μ);X*)$, the adjoint semigroup $T* = {T*(u): u ∈ ℝ_d^{+}}$ becomes a weak*-continuous semigroup of linear contractions acting on $L_∞((Ω,Σ,μ);X*)$. In this paper the local ergodic theorem is studied for the adjoint semigroup T*. Assuming that each T(u), $u ∈ ℝ_d^{+}$, has a contraction majorant P(u) defined on $L_1((Ω,Σ,μ);ℝ)$, that is, P(u) is a positive linear contraction on $L_1((Ω,Σ,μ);ℝ)$ such that $‖T(u)f(ω)‖ ≤ P(u)‖f(·)‖(ω)$ almost everywhere on Ω for every $⨍ ∈ L_1((Ω,Σ,μ);X)$, we prove that the local ergodic theorem holds for T*.
Źródło:
Studia Mathematica; 1999, 132, 3; 285-298
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatic simplification of the geometry of a cartographic line using contractive self-mapping – illustrated with an example of a polyline band
Autorzy:
Bac-Bronowicz, Joanna
Banasik, Piotr
Chrobak, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/29433667.pdf
Data publikacji:
2023-12-07
Wydawca:
Oddział Kartograficzny Polskiego Towarzystwa Geograficznego
Tematy:
digital generalization
contractive self-mapping
Salichtchev’s minimum measures
geometry of a polyline in the binary tree structure
Lipschitz’s contraction triangle
Banach theorem
Opis:
The present article is another attempt to adapt map geometry to automatic digital cartography. The paper presents a method of digital polyline generalisation that uses contractive self-mapping. It is a method of simplification, not just an algorithm for simplification. This method in its 1996 version obtained a patent entitled “Method of Eliminating Points in the Process of Numerical Cartographic Generalisation” – Patent Office of the Republic of Poland, No. 181014, 1996. The first results of research conducted using the presented method, with clearly defined data (without singular points of their geometry), were published in the works of the authors in 2021 and 2022. This article presents a transition from the DLM (Digital Landscape Model) to the DCM (Digital Cartographic Model). It demonstrates an algorithm with independent solutions for the band axis and both its edges. The presented example was performed for the so-called polyline band, which can represent real topographic linear objects such as rivers and boundaries of closed areas (buildings, lakes, etc.). An unambiguous representation of both edges of the band is its axis, represented in DLM, which can be simplified to any scale. A direct consequence of this simplification is the shape of the band representing the actual shape of both edges of the object that is classified in the database as a linear object in DCM. The article presents an example performed for the so-called polyline band, which represents real topographic linear objects (roads, rivers) and area boundaries. The proposed method fulfils the following conditions: the Lipschitz condition, the Cauchy condition, the Banach theorem, and the Salichtchev’s standard for object recognition on the map. The presented method is objective in contrast to the previously used approximate methods, such as generalisations that use graph theory and fractal geometry, line smoothing and simplification algorithms, statistical methods with classification of object attributes, artificial intelligence, etc. The presented method for changing the geometry of objects by any scale of the map is 100% automatic, repeatable, and objective; that is, it does not require a cartographer’s intervention.
Źródło:
Polish Cartographical Review; 2023, 55, 1; 73-86
2450-6974
Pojawia się w:
Polish Cartographical Review
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies