Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Adaptive-Control Factor" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Enhancement of speech communication technology performance using Adaptive-Control Factor based Spectral Subtraction method
Autorzy:
Alim, I. A.
Kolawole, M. O.
Powiązania:
https://bibliotekanauki.pl/articles/309098.pdf
Data publikacji:
2013
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
Adaptive-Control Factor
MBSS
musical noise
subbands
Opis:
This paper presents speech enhancement technique based on Spectral Subtraction (SS) method. SS is a renowned noise reduction technique that works on the principle that noise spectrum estimate over the entire speech spectrum can be subtracted from the noisy signal. On the contrary, most of the noise encountered in the real-world conditions is majorly colored. Unlike Additive White Gaussian Noise (AWGN), colored noise does not affect the speech signal uniformly over the entire spectrum. To mitigate effects of colored noise on the processed signal, we propose a Multi-Band Spectral Subtraction (MBSS) method using novel Adaptive-Control Factor (ACF). The spectrum is divided into frequency sub bands based on a nonlinear multi-band frame and various signal-to-noise ratios (SNRs) are considered. The proposed scheme results in better system performance with quality signal and unlike the basic SS method. It mitigates the effects of anomaly known as “musical” tones artifacts in the processed signal that result in residual noise and speech distortion. The computational complexity involved is minimal. Furthermore, simulation results show that the proposed algorithm removes more colored noise without removing the relatively low amplitude speech signal over the entire speech spectrum. Subjective listening tests, with clean speech signals and different noise levels, show discernable performance of our proposed method when compared with the conventional SS approach.
Źródło:
Journal of Telecommunications and Information Technology; 2013, 2; 35-39
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An adaptive particle swarm optimization algorithm for robust trajectory tracking of a class of under actuated system
Autorzy:
Kumar, V. E.
Jerome, J.
Powiązania:
https://bibliotekanauki.pl/articles/141105.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
inverted pendulum
LQR controller
particle swarm optimization (PSO)
genetic algorithm
adaptive inertia weight factor
state feedback control
Opis:
This paper presents an adaptive particle swarm optimization (APSO) based LQR controller for optimal tuning of state feedback controller gains for a class of under actuated system (Inverted pendulum). Normally, the weights of LQR controller are chosen based on trial and error approach to obtain the optimum controller gains, but it is often cumbersome and tedious to tune the controller gains via trial and error method. To address this problem, an intelligent approach employing adaptive PSO (APSO) for optimum tuning of LQR is proposed. In this approach, an adaptive inertia weight factor (AIWF), which adjusts the inertia weight according to the success rate of the particles, is employed to not only speed up the search process but also to increase the accuracy of the algorithm towards obtaining the optimum controller gain. The performance of the proposed approach is tested on a bench mark inverted pendulum system, and the experimental results of APSO are compared with that of the conventional PSO and GA. Experimental results prove that the proposed algorithm remarkably improves the convergence speed and precision of PSO in obtaining the robust trajectory tracking of inverted pendulum.
Źródło:
Archives of Electrical Engineering; 2014, 63, 3; 345-365
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies