Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ANN (Artificial Neural Networks)" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Music Mood Visualization Using Self-Organizing Maps
Autorzy:
Plewa, M.
Kostek, B.
Powiązania:
https://bibliotekanauki.pl/articles/176410.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
music mood
music parameterization
MER (Music Emotion Recognition)
MIR (Music Information Retrieval)
Multidimensional Scaling (MDS)
principal component analysis (PCA)
Self-Organizing Maps (SOM)
ANN (Artificial Neural Networks)
Opis:
Due to an increasing amount of music being made available in digital form in the Internet, an automatic organization of music is sought. The paper presents an approach to graphical representation of mood of songs based on Self-Organizing Maps. Parameters describing mood of music are proposed and calculated and then analyzed employing correlation with mood dimensions based on the Multidimensional Scaling. A map is created in which music excerpts with similar mood are organized next to each other on the two-dimensional display.
Źródło:
Archives of Acoustics; 2015, 40, 4; 513-525
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predykcja szeregów czasowych algorytmem uwzględniającym przesuwne okno czasowe i podział jednostkowy szeregów
Time Series Prediction Algorithm Containing Time Window and Divition Unit Series
Autorzy:
Hadaś-Dyduch, Monika
Powiązania:
https://bibliotekanauki.pl/articles/589443.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Algorytmy
Analiza falkowa
Prognozowanie
Szeregi czasowe
Sztuczne sieci neuronowe (SSN)
Algorithms
Artificial neural networks (ANN)
Forecasting
Time-series
Wavelet analysis
Opis:
Celem artykułu jest przedstawienie autorskiego algorytmu do predykcji szeregów czasowych. Algorytm oparto na sztucznych sieciach neuronowych oraz analizie wielorozdzielczej. Jednakże główną cechą algorytmu, dającą dobrą jakość prognozy, jest podział wszystkich uwzględnionych w analizie szeregów na kilkuelementowe podszeregi oraz uzależnienie predykcji danego szeregu od innych szeregów ekonomicznych. Aplikację algorytmu przeprowadzono na szeregu prezentującym WIG. Prognozę WIG uzależniono od notowań indeksów Dow Jones, DAX, Nikkei, Hang Seng, z uwzględnieniem przesuwnego okna czasowego. Wyznaczono, jako przykładową aplikację autorską, prognozę WIG na okres 10, 20 i 30 dni.
This article presents the author's algorithm for time series prediction. The algorithm based on artificial neural networks and multiresolution analysis. However, the main feature of the algorithm, giving a good quality of forecasts, it is all included in the division series analysis on several elements under-series and dependence prediction of a series of other economic ranks. The application of the algorithm was performed on a series of presenting WIG. The forecast WIG made dependent on trading the Dow Jones, DAX, Nikkei, Hang Seng taking into account the shift of the time window. They were, as a sample application copyright forecast WIG for a period of 10, 20 and 30 days.
Źródło:
Studia Ekonomiczne; 2015, 241; 40-50
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe ANN : sieci Kohonena
Artificial neural networks (ANN) : Kohonen networks
Autorzy:
Iljaszewicz, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/131981.pdf
Data publikacji:
2018
Wydawca:
Wrocławska Wyższa Szkoła Informatyki Stosowanej Horyzont
Tematy:
Sieci Kohonena
sieci neuronowe
mapa samoorganizująca
SOM
WEBSOM
Kohonen networks
artificial neural networks
ANN
Self Organizing Map
Opis:
Artykuł omawia sztuczne sieci neuronowe (ang. ANN- Artificial neural networks). Jedną z odmian są sieci Kohonena zwane Mapą Samoorganizującą (ang. SOM – Self Organizing Map) realizują one proces uczenia się sieci neuronowych samodzielnie tzn. rozpoznają relacje występujące w skupieniach poprzez wykrycie wewnętrznej struktury i kategoryzują je w procesie samouczenia. SOM służy do uformowania odwzorowania z przestrzeni wielowymiarowej do przestrzeni jednowymiarowej lub dwuwymiarowej. Główną cechą SOM jest to, że tworzy on nieliniową projekcję wielowymiarową kolektora danych na regularnej, niskowymiarowej (zwykle 2D) sieci. Na wyświetlaczu klastrowanie przestrzeni danych, jak również relacje metryczno-topologiczne elementów danych, są wyraźnie widoczne. Jeśli elementy danych są wektorami, składniki, których są zmiennymi z określone znaczenie, takie jak deskryptory danych statystycznych lub pomiary, które opisują proces, siatka SOM może być wykorzystana, jako podstawa, na której może znajdować się każda zmienna wyświetlane osobno przy użyciu kodowania na poziomie szarości lub pseudo koloru. Ten rodzaj projekcji został uznany za bardzo przydatny do zrozumienia wzajemnych zależności między zmiennymi, a także strukturami zbioru danych.
The article discusses artificial neural networks (ANN). One of the varieties is the Kohonen network, called the Self Organizing Map (SOM), that perform the learning process of neural networks independently, i.e. they recognize relationships occurring in clusters by detecting an internal structure and categorizing them in the process of self-learning. SOM is used to form mapping from a multidimensional space to a one-dimensional or two-dimensional space. The main feature of SOM is that it creates a non-linear multi-dimensional projection of a data collector on a regular, low-dimensional (usually 2D) network. On the display, data space clustering as well as metric-topological relations of data elements are clearly visible. If the data elements are vectors, the components of which are variables with defined meanings, such as statistical data descriptors or measurements that describe the process, the SOM grid can be used as a basis on which each variable can be displayed separately using gray or pseudo-color coding. This type of projection has been found to be very useful for understanding the interrelationships between variables as well as data set structures.
Źródło:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka; 2018, 8, 1; 34-39
2082-9892
Pojawia się w:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Quantum-inspired method of neural modeling of the day-ahead market of the Polish electricity exchange
Autorzy:
Tchórzewski, Jerzy
Ruciński, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/2183468.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
artificial neural networks
day-ahead market
dequantization with ANN
neural modeling
quantum inspired method
quantum computing
Polish Electricity Exchange
system quantization
Opis:
The paper presents selected elements of a modelling methodology involving quantization, quantum calculations and dequantization on the example of the neural model of the Day-Ahead Market of the Polish Electricity Exchange. Based on the fundamental assumptions of quantum computing, a new method has been proposed here of converting the real numbers in decimal notation into quantum mixed numbers using the probability modules of quantum mixed number and the principle of superposition, along with a new method of quantum calculations using linear algebra and vectormatrix calculus, and the Artificial Neural Network was taught accordingly. Dequantization of quantum mixed numbers to real numbers in decimal notation using the new method of dequantization has been proposed as well. The operation of the methods introduced was shown on numerical examples.
Źródło:
Control and Cybernetics; 2021, 50, 3; 383--399
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie SSN do predykcji zużycia węglowych nakładek odbieraka prądu
Application of artificial neural networks for prediction of pantograph carbon strips wear
Autorzy:
Kuźnar, M.
Powiązania:
https://bibliotekanauki.pl/articles/404331.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
odbierak prądu
pantograf
węglowa nakładka ślizgowa
diagnostyka
prognoza zużycia
sztuczne sieci neuronowe
SSN
current collector
pantograph
carbon sliding strip
diagnostics
wear prediction
artificial neural networks
ANN
Opis:
Odbieraki prądu w pojeździe trakcyjnym służą do poboru prądu z sieci trakcyjnej. Elementem mającym bezpośredni kontakt z przewodem jezdnym jest ślizgacz, a dokładniej węglowa nakładka stykowa, narażona zarówno na zużycie eksploatacyjne, jak i różnego rodzaju uszkodzenia związane z użytkowaniem. Jest elementem odbieraka najczęściej wymienianym. W celu ustalenia przyczyny uszkodzenia nakładki konieczna jest znajomość typu uszkodzenia. Przyczyna wymiany nakładki wnioskowana może być na podstawie charakterystyki zużycia węglowych nakładek stykowych. W celu predykcji zużycia węglowych nakładek stykowych zastosowano Sztuczną Sieć Neuronową typu Feed-Forward z propagacją wsteczną o 6 warstwach ukrytych po 10 neuronów w każdej warstwie. Błąd średniokwadratowy dla procesu uczenia sieci wyniósł 0,578, a wyniki dotyczące predykcji zużycia nakładki przedstawiono w artykule.
In the traction vehicles, current consumption from the overhead contact line is possible thanks to the current collectors (pantographs). An element that has a direct contact with the contact wire is a slide plate, and more specifically, a carbon contact strips. Affected by both operational wear and various types of damage related to operational maintenance, carbon strip is the element which most commonly need to be exchanged. To determine the cause of damage to the contact strip, it is necessary to know the type of damage. The reason for replacing the carbon contact strip may be claimed on the basis of the wear characteristics. In order to predict the wear of carbon strip, a Feed-Forward Artificial Neural Network with backward propagation of 6 hidden layers and 10 neurons in each layer was applied. The mean square error for the network learning process was 0.578, and the results for the pantograph contact strip wear were presented in the article.
Źródło:
Symulacja w Badaniach i Rozwoju; 2017, 8, 3-4; 97-103
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Soft modelling of the shaping of metal profiles in rapid tube hydroforming technology
Autorzy:
Sadłowska, Hanna
Kochański, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/29520063.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
rapid tube hydroforming
RTH
manufacturing
constitutive modelling
soft modelling
finite element method
FEM
artificial neural networks
ANN
hydroformowanie rur
produkcja
modelowanie konstytutywne
miękkie modelowanie
metoda elementów skończonych
MES
sztuczne sieci neuronowe
Opis:
The paper presents an approach to the impact of process parameters in innovative RTH (Rapid Tube Hydroforming) technology for shaping closed metal profiles in flexible and deformable dies. In order to implement the assumed deformation of the deformed profile, the RTH technology requires the monitoring and control of numerous technological parameters, including geometric, material, and technological variables. The paper proposes a two-stage research procedure considering hard modelling (constitutive) and soft modelling (data-driven). Due to the complexity of the technological process, it was required to develop a numerical finite element method FEM model focused on obtaining the adequate profile deformation measured by the ellipsoidality of the cylindrical profile. Based on the results of the numerical experiments, a preliminary soft mathematical model using ANN was developed. Analysing the soft model results, several statistical hypotheses were made and verified to investigate the significance of selected process parameters. Thanks to this, it was possible to select the most important process parameters, i.e., the properties of moulding sands used for RTH dies: the angle of internal friction and cohesion.
Źródło:
Computer Methods in Materials Science; 2022, 22, 4; 201-210
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies