Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "43.55.Cs" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Sound Field Diffusivity Assessment in Non-Stationary State by Measuring Nonuniformity of Sound Decay Curve
Autorzy:
Leo, K.
Powiązania:
https://bibliotekanauki.pl/articles/1490368.pdf
Data publikacji:
2012-01
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
43.55.Br
43.55.Cs
Opis:
Methods of sound diffusion assessment presented in literature require information on directional properties of the sound field in stationary state. These methods are complicated and not often applicable in measurement practice. Measurement of the sound field diffusivity during its formation can be assessed from sound level decay curve deviation from a linear shape. With this method, the degree of diffusivity has been determined in three rooms. Measurements were performed in rooms differing in volumes and sound absorption. Changes in sound decay uniformity were noted, which can be translated into diffusion coefficient changes. Results indicate that diffusion increases as room absorption decreases. Diffusion does not depend on room volume. Changes of sound decay uniformity follow trends that are well described by power function.
Źródło:
Acta Physica Polonica A; 2012, 121, 1A; A-197-A-200
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determination of Acoustic Impedance of Walls Based on Acoustic Field Parameter Values Measured in the Room
Autorzy:
Piechowicz, J.
Czajka, I.
Powiązania:
https://bibliotekanauki.pl/articles/1400092.pdf
Data publikacji:
2013-06
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
43.20.Ye
43.55.Ev
43.55.Cs
43.55.Dt
Opis:
Acoustic field in enclosed rooms in the low frequency range can be described by the wave model, based on solution of the wave equation. Solution to the wave equation for acoustic field in the room can be obtained using numerical procedures, e.g. the boundary elements method. Determination of acoustic impedance of the room walls surface material, based on the knowledge of the distribution of acoustic pressure amplitudes in the enclosed space, requires application of the inverse boundary elements method and gathering a proper set of input data. The paper presents the possibilities of analysis of acoustic properties for industrial-type rooms, by using inverse methods in the low frequency range.
Źródło:
Acta Physica Polonica A; 2013, 123, 6; 1068-1071
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bubble-Like Response of Living Blood Cells and Microparticles in an Ultrasound Field
Autorzy:
Mazzawi, N.
Postema, M.
Kimmel, E.
Powiązania:
https://bibliotekanauki.pl/articles/1383573.pdf
Data publikacji:
2015-01
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
43.80.Cs
47.55.df
87.80.Fe
Opis:
The bilayer sonophore model suggests that ultrasound induces a pulsating structure in the intra-membrane hydrophobic space between the two lipid monolayer leaflets of the cell membrane, assembled by dissolved gas of the surrounding area, which absorbs acoustic energy and transforms it by creating intra-cellular structural changes. This void has been referred to as a bilayer sonophore. The bilayer sonophore inflates and deflates periodically when exposed to ultrasound and may itself radiate acoustic pressure pulses in the surrounding medium in the same way a gas bubble does: once exposed to ultrasound the bilayer sonophore becomes a mechanical oscillator and a source of intracellular cavitation activity. In this paper, we describe observations of the clustering behaviour of living cells and several other particles in a standing sound field generated inside a ring transducer. Upon sonication, blood cells and monodisperse polystyrene particles were observed to have been trapped in the same locations, corresponding to nodes of the ultrasound field. Because polystyrene is hydrophobic, it behaves like a particle trapped inside a thin gas shell. In fact, the sonophore model treats biological cells in a similar way. Microbubbles that form the ultrasound contrast agent Quantison™ behave differently, however. These microbubbles accumulated in circles faster than blood cells and polystyrene particles. In addition, they form tightly packed clusters at the nodes, indicating very strong secondary Bjerknes forces. Cluster formation is not to be expected in cells with predicted sonophore sizes on the order of 10-100 nm.
Źródło:
Acta Physica Polonica A; 2015, 127, 1; 103-105
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies