Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "2-edge-connected graph" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Edge-Connectivity and Edges of Even Factors of Graphs
Autorzy:
Haghparast, Nastaran
Kiani, Dariush
Powiązania:
https://bibliotekanauki.pl/articles/31343450.pdf
Data publikacji:
2019-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
3-edge-connected graph
2-edge-connected graph
even factor
component
Opis:
An even factor of a graph is a spanning subgraph in which each vertex has a positive even degree. Jackson and Yoshimoto showed that if G is a 3-edge-connected graph with |G| ≥ 5 and v is a vertex with degree 3, then G has an even factor F containing two given edges incident with v in which each component has order at least 5. We prove that this theorem is satisfied for each pair of adjacent edges. Also, we show that each 3-edge-connected graph has an even factor F containing two given edges e and f such that every component containing neither e nor f has order at least 5. But we construct infinitely many 3-edge-connected graphs that do not have an even factor F containing two arbitrary prescribed edges in which each component has order at least 5.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 357-364
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Conflict-Free Connections of Graphs
Autorzy:
Czap, Július
Jendroľ, Stanislav
Valiska, Juraj
Powiązania:
https://bibliotekanauki.pl/articles/31342254.pdf
Data publikacji:
2018-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
conflict-free connection
2-edge-connected graph
tree
Opis:
An edge-colored graph G is conflict-free connected if any two of its vertices are connected by a path, which contains a color used on exactly one of its edges. In this paper the question for the smallest number of colors needed for a coloring of edges of G in order to make it conflict-free connected is investigated. We show that the answer is easy for 2-edge-connected graphs and very difficult for other connected graphs, including trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 4; 911-920
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies