Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę ""natural language"" wg kryterium: Temat


Tytuł:
Adaptive Rider Feedback Artificial Tree Optimization-Based Deep Neuro-Fuzzy Network for Classification of Sentiment Grade
Autorzy:
Jasti, Sireesha
Kumar, G.V.S. Raj
Powiązania:
https://bibliotekanauki.pl/articles/2200961.pdf
Data publikacji:
2023
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
deep learning network
feedback artificial tree
natural language processing (NLP)
rider optimization algorithm
sentiment grade classification
Opis:
Sentiment analysis is an efficient technique for expressing users’ opinions (neutral, negative or positive) regarding specific services or products. One of the important benefits of analyzing sentiment is in appraising the comments that users provide or service providers or services. In this work, a solution known as adaptive rider feedback artificial tree optimization-based deep neuro-fuzzy network (RFATO-based DNFN) is implemented for efficient sentiment grade classification. Here, the input is pre-processed by employing the process of stemming and stop word removal. Then, important factors, e.g. SentiWordNet-based features, such as the mean value, variance, as well as kurtosis, spam word-based features, term frequency-inverse document frequency (TF-IDF) features and emoticon-based features, are extracted. In addition, angular similarity and the decision tree model are employed for grouping the reviewed data into specific sets. Next, the deep neuro-fuzzy network (DNFN) classifier is used to classify the sentiment grade. The proposed adaptive rider feedback artificial tree optimization (A-RFATO) approach is utilized for the training of DNFN. The A-RFATO technique is a combination of the feedback artificial tree (FAT) approach and the rider optimization algorithm (ROA) with an adaptive concept. The effectiveness of the proposed A-RFATO-based DNFN model is evaluated based on such metrics as sensitivity, accuracy, specificity, and precision. The sentiment grade classification method developed achieves better sensitivity, accuracy, specificity, and precision rates when compared with existing approaches based on Large Movie Review Dataset, Datafiniti Product Database, and Amazon reviews.
Źródło:
Journal of Telecommunications and Information Technology; 2023, 1; 37--50
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatically generated language learning exercises for Finno-Ugric languages
Autorzy:
Ferenczi, Zsanett
Powiązania:
https://bibliotekanauki.pl/articles/40221007.pdf
Data publikacji:
2023
Wydawca:
Katolicki Uniwersytet Lubelski Jana Pawła II
Tematy:
natural language processing
computer-assisted language learning
virtual flashcards
Finno-Ugric languages
Opis:
Morphologically rich languages always constitute a great challenge for language learners. The learner must be able to understand the information encoded in different word forms of the same root and to generate the correct word form to express certain syntactic functions and grammatical relations by conjugating a verb or declining a noun, an adjective or a pronoun. One way to improve one’s language skills is through exercises that focus on certain aspects of grammar. In this paper, a language learning application is presented that is intended to help learners of Finnish and Hungarian (with Hungarian and Finnish L1, respectively) acquire new vocabulary items, as well as practice some grammar aspects that according to surveys are considered difficult by learners of these languages with the other Finno-Ugric language being the learner’s native tongue, while alleviating the need to create these exercises manually. This application is a result of an on-going research project. In this research project, bilingual translation pairs and additional monolingual data were collected that can be utilized to build language learning exercises and an online bilingual dictionary with the help of automatic methods. Several linguistic patterns and rules were defined in order to automatically select example sentences that focus on a given part of the target language. These sentences were automatically annotated with the help of language processing tools. Due to the large size of the previously collected data sets, to date, only a subset of the analyzed sentences and the bilingual translation pairs has been manually evaluated. The results of this evaluation are discussed in this paper in order to estimate the precision of the methodology presented here. To ensure the precision of the information and the reliability of the application, only manually validated data sets are displayed. In this project, continuous data validation is planned, since it leads to more and more examples and vocabulary items that learners can benefit from.
Źródło:
Linguistics Beyond and Within; 2023, 9; 23-35
2450-5188
Pojawia się w:
Linguistics Beyond and Within
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ChatGPT: Unlocking the future of NLP in finance
Autorzy:
Zaremba, Adam
Demir, Ender
Powiązania:
https://bibliotekanauki.pl/articles/23943459.pdf
Data publikacji:
2023
Wydawca:
Fundacja Naukowa Instytut Współczesnych Finansów
Tematy:
Natural Language Processing (NLP)
ChatGPT
GPT (Generative Pre-training Transformer)
finance
financial applications
ethical considerations
regulatory considerations
future research directions
Opis:
This paper reviews the current state of ChatGPT technology in finance and its potential to improve existing NLP-based financial applications. We discuss the ethical and regulatory considerations, as well as potential future research directions in the field. The literature suggests that ChatGPT has the potential to improve NLP-based financial applications, but also raises ethical and regulatory concerns that need to be addressed. The paper highlights the need for research in robustness, interpretability, and ethical considerations to ensure responsible use of ChatGPT technology in finance.
Źródło:
Modern Finance; 2023, 1, 1; 93-98
2956-7742
Pojawia się w:
Modern Finance
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Goal - oriented conversational bot for employment domain
Autorzy:
Drozda, Paweł
Żmijewski, Tomasz
Osowski, Maciej
Krasnodębska, Aleksandra
Talun, Arkadiusz
Powiązania:
https://bibliotekanauki.pl/articles/22615524.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Warmińsko-Mazurski w Olsztynie
Tematy:
chatbot
Deep Q Network
DQN
goal
oriented bot
Natural Language Processing
NLP
Opis:
This paper focuses of the implementation of the goal – oriented chatbot in order to prepare virtual resumes of candidates for job position. In particular the study was devoted to testing the feasibility of using Deep Q Networks (DQN) to prepare an effective chatbot conversation flow with the final system user. The results of the research confirmed that the use of the DQN model in the training of the conversational system allowed to increase the level of success, measured as the acceptance of the resume by the recruiter and the finalization of the conversation with the bot. The success rate increased from 10% to 64% in experimental environment and from 15% to 45% in production environment. Moreover, DQN model allowed the conversation to be shortened by an average of 4 questions from 11 to 7.
Źródło:
Technical Sciences / University of Warmia and Mazury in Olsztyn; 2023, 26(1); 111--123
1505-4675
2083-4527
Pojawia się w:
Technical Sciences / University of Warmia and Mazury in Olsztyn
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Towards mass customisation: automatic processing of orders for residential ship’s containers - A case study example
Autorzy:
Dudek, Adam
Patalas-Maliszewska, Justyna
Frączak, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/27311441.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
mass customization
natural language processing
automatic processing of orders
residential shipping container
masowa personalizacja
przetwarzanie języka naturalnego
kontener mieszkalny
obsługa zamówień automatyczna
Opis:
Along with changes in customer expectations, the process of ordering a house, especially one built with the most modern technology from prefabricated HQ 40-foot shipping containers, should take place in an atmosphere of free-flowing, customer-friendly conversation. Therefore, it is important that the company producing such a solution has a tool supporting such offers and orders when producing personalized solutions. This article provides an original approach to the automatic processing of orders based on an example of orders for residential shipping containers, natural language processing and so-called premises developed. Our solution overcomes the usage of records of the conversations between the customer and the retailer, in order to precisely predict the variant required for the house ordered, also when providing optimal house recommendations and when supporting manufacturers throughout product design and production. The newly proposed approach examines such recorded conversations in the sale of residential shipping containers and the rationale developed, and then offers the automatic placement of an order. Moreover, the practical significance of the solution, thus proposed, was emphasized thanks to verification by a real residential ship container manufacturing company in Poland.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 3; art. no. e145562
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental Comparison of Pre-Trained Word Embedding Vectors of Word2Vec, Glove, FastText for Word Level Semantic Text Similarity Measurement in Turkish
Autorzy:
Tulu, Cagatay Neftali
Powiązania:
https://bibliotekanauki.pl/articles/2201815.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
semantic word similarity
word embeddings
NLP
Turkish NLP
natural language processing
Opis:
This study aims to evaluate experimentally the word vectors produced by three widely used embedding methods for the word-level semantic text similarity in Turkish. Three benchmark datasets SimTurk, AnlamVer, and RG65_Turkce are used in this study to evaluate the word embedding vectors produced by three different methods namely Word2Vec, Glove, and FastText. As a result of the comparative analysis, Turkish word vectors produced with Glove and FastText gained better correlation in the word level semantic similarity. It is also found that The Turkish word coverage of FastText is ahead of the other two methods because the limited number of Out of Vocabulary (OOV) words have been observed in the experiments conducted for FastText. Another observation is that FastText and Glove vectors showed great success in terms of Spearman correlation value in the SimTurk and AnlamVer datasets both of which are purely prepared and evaluated by local Turkish individuals. This is another indicator showing that these aforementioned datasets are better representing the Turkish language in terms of morphology and inflections.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 4; 147--156
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implementing Natural Language Inference for comparatives
Autorzy:
Haruta, Izumi
Mineshima, Koji
Bekki, Daisuke
Powiązania:
https://bibliotekanauki.pl/articles/24201228.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Podstaw Informatyki PAN
Tematy:
comparatives
compositional semantics
theorem proving
Combinatory Categorial Grammar
Natural Language Inference
Opis:
This paper presents a computational framework for Natural Language Inference (NLI) using logic-based semantic representations and theorem-proving. We focus on logical inferences with comparatives and other related constructions in English, which are known for their structural complexity and difficulty in performing efficient reasoning. Using the so-called A-not-A analysis of comparatives, we implement a fully automated system to map various comparative constructions to semantic representations in typed first-order logic via Combinatory Categorial Grammar parsers and to prove entailment relations via a theorem prover. We evaluate the system on a variety of NLI benchmarks that contain challenging inferences, in comparison with other recent logic-based systems and neural NLI models.
Źródło:
Journal of Language Modelling; 2022, 10, 1; 139--191
2299-856X
2299-8470
Pojawia się w:
Journal of Language Modelling
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Językoznawstwo korpusowe w badaniach medioznawczych – ujęcie historyczne i praktyczne
Corpus Linguistics in Media Studies – a Historical and Practical Approach
Autorzy:
Hess, Agnieszka
Hwaszcz, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/31340792.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Rzeszowski. Wydawnictwo Uniwersytetu Rzeszowskiego
Tematy:
discourse analysis
media analysis
corpus linguistics
natural language
processing tools
analiza dyskursu
analiza mediów
językoznawstwo korpusowe
narzędzia do przetwarzania języka naturalnego
Opis:
Celem artykułu jest przedstawienie korzyści i zagrożeń wynikających z implementacji komputerowego językoznawstwa korpusowego do analizy dyskursu. Autorzy opisują genezę i rozwój narzędzi do przetwarzaniu języka naturalnego (z ang. Natural Language Processing, NLP) w ujęciu historycznym oraz prezentują przykłady ich zastosowania w obszarze nauk społecznych, w szczególności w metodologii nauk o komunikacji społecznej i mediach. Praktyczne ujęcie tematu obrazują fragmentaryczne wyniki badań zrealizowanych w Instytucie Dziennikarstwa, Mediów i Komunikacji Społecznej Uniwersytetu Jagiellońskiego we współpracy z konsorcjum CLARIN-PL. Artykuł prezentuje zastosowanie narzędzi NLP w analizie korpusu dyskursu parlamentarnego z lat 1989– 2019 pod kątem uwarunkowań instytucjonalizacji dialogu obywatelskiego w Polsce oraz w analizie porównawczej tematu wielokulturowości w dyskursie rady miasta i dyskursie mediów w Krakowie w okresie 2014–2018 (VII kadencja Rady Miasta Krakowa). Autorzy wskazują, w której fazie i jak lingwistyka komputerowa wpisuje się w szeroki kontekst problematyki związanej z badaniami komunikologicznymi – przede wszystkim jako narzędzie, które może wspierać proces wnioskowania.
The aim of this paper is to present the benefits and risks of implementing corpus linguistics for discourse analysis. The authors describe the origins and development of Natural Language Processing (NLP) tools in a historical perspective and provide examples of their application in social sciences, particularly in the methodology of Social Communication and Media Sciences. Fragmentary findings of studies carried out at the Institute of Journalism, Media and Social Communication at the Jagiellonian University in collaboration with the CLARIN-PL consortium illustrate a practical approach to the topic. The article presents the application of NLP tools in the analysis of the corpus of parliamentary discourse from 1989-2019 in terms of determinants for the institutionalization of civic dialogue in Poland and also in the comparative analysis of multiculturalism in the city council discourse and media discourse in Krakow between 2014–2018 (7th term of the Krakow City Council). The authors indicate in which phase and at which stage of communication research the use of computational linguistics can support the conclusion.
Źródło:
UR Journal of Humanities and Social Sciences; 2022, 25, 4; 118-132
2543-8379
Pojawia się w:
UR Journal of Humanities and Social Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ontology Extraction from Software Requirements Using Named-Entity Recognition
Autorzy:
Kocerka, Jerzy
Krześlak, Michał
Gałuszka, Adam
Powiązania:
https://bibliotekanauki.pl/articles/2201736.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
engineering requirements
ontology extraction
named-entity recognition
classification and terminology
terminology
natural language processing
NLP
Opis:
With the software playing a key role in most of the modern, complex systems it is extremely important to create and keep the software requirements precise and non-ambiguous. One of the key elements to achieve such a goal is to define the terms used in a requirement in a precise way. The aim of this study is to verify if the commercially available tools for natural language processing (NLP) can be used to create an automated process to identify whether the term used in a requirement is linked with a proper definition. We found out, that with a relatively small effort it is possible to create a model that detects the domain specific terms in the software requirements with a precision of 87 %. Using such model it is possible to determine if the term is followed by a link to a definition.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 3; 207--212
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Smart and valued? ICT urban (transport) solutions in the city official communication
Autorzy:
Kauf, Sabina
Pisz, Iwona
Powiązania:
https://bibliotekanauki.pl/articles/24202577.pdf
Data publikacji:
2022
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
smart city
smart mobility
Natural Language Processing
ICT
official communication
ICT technology
transport
Opis:
To optimize the everyday functioning of a city, urban authorities can implement smart city tools and solutions. Mobility is a typical field associated with the concept of a smart city. It is interesting to take a closer look at the solutions applied through the information accessible on the official websites, while exploring, at the same time, the possibilities offered by new research tools. The main objective of this work is to establish the significance of the information and communication technologies (ICT) in the process of creating smart mobility in a smart city, based on the texts posted on official websites. Using the natural language processing (NLP) methods and tools offered by the CLARIN.EU infrastructure, we verified dominant connotations with the mobility in the cities recognized as smart. The cities sample is the extract from the existing smart city rankings. To fulfil our goal, we searched for an answer to the question: What information about ICT solutions is posted on the websites of the studied cities and in what thematic contexts are they used? We looked for the results of the smart city rankings, referring to the official websites of the selected cities (a random selection from a total of 174 cities). The results show that mobility forms a distinct topic in smart cities communication, covering various kinds of transport solutions and systems, with a strong focus on the project side of this activity. The results are the part of the research “The smart city 4.0 maturity model,” conducted at the Department of Marketing and Logistics UO.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2022, 72 (144); 152--161
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strategy for Improving Crowdfunding Investments in Startup Business
Стратегія покращення краудфандингових інвестицій у стартап-бізнес
Autorzy:
Pasmawati, Yanti
Tontowi, Alva Edy
Hartono, Budi
Wijayanto, Titis
Powiązania:
https://bibliotekanauki.pl/articles/21270310.pdf
Data publikacji:
2022-03-04
Wydawca:
Dnieprowski Uniwersytet Narodowy im. Ołesia Honczara
Tematy:
crowdfunding
startup business
online customer reviews
sentiment analysis
natural language processing
краудфандинг
стартап-бізнес
онлайн-відгуки клієнтів
аналіз настроїв
процеси обробки природної мови
Opis:
Purpose: This research was conducted to analyze the extent to which online customer reviews (OCRs) can stimulate investment backers as a strategy to increase crowdfunding investment. Design / Method / Approach: This research is quantitative. Natural language processing (NLP) processes review text documents based on linguistic study, a lexicon-based method is used for sentiment analysis classification based on polarity score (pros and cons), while Multiple linear regression forms a model or relationship between online customer reviews and crowdfunding investments. OCRs consisting of numeric and text features were collected from one hundred technology products (3D printing, drones, cameras, wearables) on Kickstarter.com. Findings: The study results show that, in addition to positive reviews, the number of comments and the number of sentiment reviews can increase consumer interest in investing in technology products on the crowdfunding platform. Moreover, positive reviews have the most positive effect on crowdfunding investments. Practical Implications: The study results are expected to be used for startup business, especially technology products as a strategy to increase funding investment on a reward-based crowdfunding platform. Startups can take advantage of online customer reviews as one of important factors in stimulating potential backers and backers to invest. Social implications: The strategy of utilizing online customer reviews can be used especially for technology product-based startup business to get funding support as a resource in completing a product development stage. Originality / Value: The novelty of this research is that it focuses on a technological product development stage, product campaigns on a reward-based crowdfunding platform, considering online customer reviews through sentimental (online reviews) and numerical characteristics (number of comments, number of sentiment reviews) simultaneously as a strategy to increase investment. Research Limitations / Future Research: This study has some limitations as it used only online customer reviews as an attribute that affects crowdfunding investment. Future research is expected to explore online customer reviews to determine important attributes (unique words) as consideration for strategies to increase crowdfunding investment.
Мета роботи: Це дослідження було проведено, щоб проаналізувати, наскільки онлайн-огляди клієнтів (OCRs) можуть стимулювати спонсорів інвестицій як стратегію збільшення інвестицій у краудфандинг. Дизайн / Метод / Підхід дослідження: Це дослідження є кількісним. Процеси обробки природної мови (NLP) переглядають текстові документи на основі лінгвістичного дослідження, метод на основі лексики використовується для класифікації настроїв на основі оцінки полярності (за і проти), тоді як множинна лінійна регресія формує модель або зв’язок між відгуками клієнтів в Інтернеті та краудфандинговими інвестиціями. OCRs, що складаються з числових і текстових функцій, були зібрані зі ста технологічних продуктів (3D-друк, дрони, камери, носії) на Kickstarter.com. Результати дослідження: Результати дослідження показують, що, крім позитивних відгуків, кількість коментарів і кількість відгуків про настрої можуть підвищити інтерес споживачів до інвестування в технологічні продукти на платформі краудфандингу. Більше того, позитивні відгуки найбільш позитивно впливають на краудфандингові інвестиції. Практична цінність дослідження: Очікується, що результати дослідження будуть використані для стартап-бізнесу, особливо технологічних продуктів, як стратегії збільшення інвестицій у фінансування на краудфандинговій платформі, заснованій на винагородах. Стартапи можуть скористатися перевагами онлайн-оглядів клієнтів як одним із важливих факторів стимулювання потенційних спонсорів і спонсорів, вже готових інвестувати. Соціальна цінність дослідження: Стратегія використання онлайн-відгуків клієнтів може бути використана особливо для запуску бізнесу на основі технологічних продуктів, щоб отримати фінансову підтримку як ресурс для завершення етапу розробки продукту. Оригінальність / Цінність дослідження: Новизна цього дослідження полягає в тому, що воно зосереджується на етапі розробки технологічного продукту, продуктових кампаніях на краудфандинговій платформі, заснованій на винагородах, враховуючи онлайн-відгуки клієнтів через сентиментальні (огляди в Інтернеті) та числові характеристики (кількість коментарів, кількість оцінки настроїв) одночасно як стратегія збільшення інвестицій. Обмеження дослідження / Майбутні дослідження: У цьому дослідженні є деякі обмеження, оскільки було використано лише онлайнові відгуки клієнтів як атрибут, який впливає на інвестиції в краудфандинг. Очікується, що майбутні дослідження будуть вивчати відгуки клієнтів в Інтернеті, щоб визначити важливі атрибути (унікальні слова) для розгляду стратегій збільшення інвестицій у краудфандинг.
Źródło:
European Journal of Management Issues; 2022, 30, 1; 17-24
2519-8564
Pojawia się w:
European Journal of Management Issues
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The image of a vocational school teacher in the eyes of students and its relationship with the effectiveness of education
Autorzy:
Pardej, Katarzyna
Waszkowski, Robert
Powiązania:
https://bibliotekanauki.pl/articles/36786100.pdf
Data publikacji:
2022-05-09
Wydawca:
Wydawnictwo Naukowe Chrześcijańskiej Akademii Teologicznej w Warszawie
Tematy:
vocational education
vocational teacher
effective teaching
Natural Language Processing
sentiment analysis
machine learning
Opis:
The article discusses the competencies of vocational education teachers, as well as discusses the results of own research, which aimed to determine three types of teachers conceptualized by students - the most liked, the least liked, and the dream one. The research used the interview method, where the research technique was an interview, and the research tool was an interview questionnaire. The students' statements were analyzed using the Python Natural Language Toolkit used for natural language processing. In this way, the most common words used by students in describing teachers were selected. As a result, the personal qualities and pedagogical competencies of mechatronic teachers that students approve and disapprove of, as well as those that they lack and which would make a difference to the effectiveness of education, were identified.
Źródło:
Studia z Teorii Wychowania; 2022, XIII(1(38)); 121-140
2083-0998
2719-4078
Pojawia się w:
Studia z Teorii Wychowania
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Traversing the Metaverse: the new frontiers for computer-mediated communication and natural language processing
Przemierzając metawersum: nowe granice w komunikacji zapośredniczonej przez komputer i w przetwarzaniu języka naturalnego
Autorzy:
Solska, Dagmara
Powiązania:
https://bibliotekanauki.pl/articles/2195900.pdf
Data publikacji:
2022-12-31
Wydawca:
Ateneum - Akademia Nauk Stosowanych w Gdańsku
Tematy:
metaverse
virtual reality
computer mediated communication
natural language processing
cyberspace
computational linguistics
metawersum
rzeczywistość wirtualna
przetwarzanie języka naturalnego
cyberprzestrzeń
lingwistyka komputerowa
komunikacja zapośredniczona przez komputer
Opis:
The primary objective of the following paper is to explore the concept of the Metaverse encompassing the Internet revolution, the information revolution, and the artificial intelligence technology revolution, which further incorporates virtual reality (VR), augmented reality (AR), and mixed reality (MR) technologies. Due to the fact that the current, fourth wave of computing innovation can be regarded as driven by immersive, spatial technologies, the Metaverse as the socalled post-reality universe and multi-user virtual environment has a considerable potential to become the future of the digital discourse. With Natural Language Processing (NLP) conceptualized as a subfield of artificial intelligence and linguistics, the following paper argues for the inclusion of NLP-based methods in the developing discourse revolving around the transformative idea of the Metaverse. At the same time, computer-mediated communication (CMC), can potentially be extended to the new context of the extensive online world of the Metaverse.
Głównym celem niniejszego artykułu jest przyjrzenie się koncepcji metawersum obejmującej rewolucję internetową, rewolucję informacyjną i rewolucję technologii sztucznej inteligencji, która obejmuje rzeczywistość wirtualną (VR), rzeczywistość rozszerzoną (AR) i rzeczywistość mieszaną (MR). W związku z tym, że obecną, czwartą falę innowacji komputerowych można uznać za napędzaną przez immersyjne, przestrzenne technologie, metawersum postrzegane jako uniwersum postrzeczywistości i wieloużytkownikowe środowisko wirtualne ma znaczący potencjał, by stać się przyszłością dyskursu cyfrowego. Poprzez umiejscowienie przetwarzania języka naturalnego (NLP) jako poddziedziny sztucznej inteligencji i językoznawstwa, niniejszy artykuł opowiada się za włączeniem metod NLP do rozwijającego się dyskursu dotyczącego transformacyjnej metawersum. Jednocześnie komunikacja zapośredniczona przez komputer (CMC), może potencjalnie zostać rozszerzona do nowego kontekstu rozbudowanego internetowego świata metawersum.
Źródło:
Forum Filologiczne Ateneum; 2022, 10, 1; 27-38
2353-2912
2719-8537
Pojawia się w:
Forum Filologiczne Ateneum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
De la définition formelle du concept à la définition en langue du terme
From the Formal Definition of Concept to the Linguistic Definition of Term
Autorzy:
Roche, Christophe
Powiązania:
https://bibliotekanauki.pl/articles/2015073.pdf
Data publikacji:
2021
Wydawca:
Komisja Nauk Filologicznych Polskiej Akademii Nauk, Oddział we Wrocławiu
Tematy:
conceptual terminology
ontology
formal definition of concept
definition of term in natural language
pattern of definitions
Opis:
This article deals with the contribution of formal definition of concepts to the definition of terms in natural language in the context of the ontological turn of terminology. Ontology in the sense of knowledge engineering constitutes one of the most promising perspectives for conceptual terminology, for which a term is a verbal designation of a concept, and a concept a unit of knowledge. The contribution of ontology is not limited to the operationalization of terminology for IT applications. By making concepts explicit, i.e., by defining them in a formal language, ontology strongly impacts terminology, both in its principles and methods. Specifying concepts in a formal language allows guaranteeing “good” properties, such as the objectivity of definitions whose interpretation is governed by theory alone. The definition of terms in a natural language can then be considered as a translation of the formal definition of a concept. How these two types of definition are linked to each other remains to be clarified, and in particular whether it is possible to generate patterns of term definition based on formal concept definition. This will depend on the formal language which will be used, and on the underlying concept theory.
Źródło:
Academic Journal of Modern Philology; 2021, 13; 275-290
2299-7164
2353-3218
Pojawia się w:
Academic Journal of Modern Philology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning based Tamil Parts of Speech (POS) tagger
Autorzy:
Anbukkarasi, S.
Varadhaganapathy, S.
Powiązania:
https://bibliotekanauki.pl/articles/2086879.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
POS tagging
part of speech
deep learning
natural language processing
BiLSTM
Bi-directional long short term memory
tagowanie POS
części mowy
uczenie głębokie
przetwarzanie języka naturalnego
Opis:
This paper addresses the problem of part of speech (POS) tagging for the Tamil language, which is low resourced and agglutinative. POS tagging is the process of assigning syntactic categories for the words in a sentence. This is the preliminary step for many of the Natural Language Processing (NLP) tasks. For this work, various sequential deep learning models such as recurrent neural network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and Bi-directional Long Short-Term Memory (Bi-LSTM) were used at the word level. For evaluating the model, the performance metrics such as precision, recall, F1-score and accuracy were used. Further, a tag set of 32 tags and 225 000 tagged Tamil words was utilized for training. To find the appropriate hidden state, the hidden states were varied as 4, 16, 32 and 64, and the models were trained. The experiments indicated that the increase in hidden state improves the performance of the model. Among all the combinations, Bi-LSTM with 64 hidden states displayed the best accuracy (94%). For Tamil POS tagging, this is the initial attempt to be carried out using a deep learning model.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 6; e138820, 1--6
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies