Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Zhang, Ze" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Reverse flotation of collophanite at natural pH using isooctyl polyoxyethylene ether phosphate as a collector
Autorzy:
Li, Hongqiang
Zhang, Wen
Chen, Qian
Huang, Peng
Kasomo, Richard M.
Zou, Ze
Weng, Xiaoqing
He, Dongsheng
Yang, Siyuan
Song, Shaoxian
Powiązania:
https://bibliotekanauki.pl/articles/1445877.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
reverse flotation
dolomite
fluorapatite
AEP
selective adsorption
Opis:
Reverse flotation of collophanite at natural pH could significantly decrease the cost of pH regulators. In this study, isooctyl polyoxyethylene ether phosphate (AEP) was tested as a new surfactant in the reverse flotation of collophanite. Micro-flotation tests were conducted, and the adsorption mechanism of the new collector was analysed using X-ray photoelectron spectroscopy (XPS) and zeta potential analyses. The results of the flotation tests demonstrated that AEP could enable dolomite to float under natural pH (pH=7.2) and showed profound selectivity towards dolomite as opposed to fluorapatite. Based on the zeta potential and XPS results, the adsorption phenomena are mainly attributed to calcium active sites on both mineral surfaces. Dolomite possesses more magnesium active sites than fluorapatite, which tend to reinforce the interaction effect between AEP and dolomite. Furthermore, when compared to CO32- ions on the dolomite surface, PO43- ions on the fluorapatite surface tend to exhibit a stronger hindrance to the adsorption of AEP on the fluorapatite surface. This is attributed to their larger volumes and more charges on their surfaces, thereby causing a floatability difference between the two minerals.
Źródło:
Physicochemical Problems of Mineral Processing; 2021, 57, 4; 78-86
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Real-time equipment condition assessment for a class-imbalanced dataset based on heterogeneous ensemble learning
Ocena stanu sprzętu w czasie rzeczywistym dla zbiorów danych o niezrównoważonym rozkładzie w klasach. Metoda oparta na uczeniu zespołowym
Autorzy:
Chen, Xiaohui
Zhang, Zhiyao
Zhang, Ze
Powiązania:
https://bibliotekanauki.pl/articles/300613.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
condition assessment
heterogeneous ensemble learning
genetic algorithm
class-imbalanced
ocena stanu
uczenie zespołowe
algorytm genetyczny
niezrównoważony rozkład w klasach
Opis:
This study proposes an ensemble learning model for the purpose of performing a real-time equipment condition assessment. This model makes it possible to plan desired preventive maintenance activities before an unexpected failure takes place. This study focuses on the class-imbalanced problem in equipment condition assessment research. In reality, equipment will experience multiple conditions(states), most of the time remaining in the normal condition and relatively rarely being in the critical condition, which means that, from the perspective of data modelling, the distribution of samples is highly imbalanced among different classes(conditions). The majority of samples belong to the normal condition, while the minority belong to the critical condition, which poses a great challenge to the classification performance. To address this problem, a genetic algorithm-based ensemble learning model is presented. Furthermore, a self-updating learning strategy is presented for online monitoring, contributing to adaptability and reliability enhancement along with time. Many previous studies have attempted feature extraction and to set thresholds for equipment health indicators. This study has an advantage of omitting these steps, as it can directly assess the equipment condition through the proposed ensemble learning model. Numerical experiments, including two types of comparison studies, have been conducted. The results show the greater effectiveness of our proposed model over that of previous research in terms of the stability and accuracy of its classification performance.
W pracy przedstawiono model uczenia maszynowego opartego na zespołach niejednorodnych klasyfikatorów (ensemble learning), który pozwala przeprowadzać ocenę stanu sprzętu w czasie rzeczywistym. Model ten umożliwia zaplanowanie niezbędnych czynności konserwacji profilaktycznej przed wystąpieniem niespodziewanego uszkodzenia. Tematem pracy jest zagadnienie niezrównoważonego rozkładu w klasach poruszane w badaniach dotyczących oceny stanu sprzętu. W warunkach rzeczywistych, sprzęt chrakteryzuje wiele różnych stanów, przy czym przez większość czasu pozostaje on w stanie normalnym, a relatywnie rzadko znajduje się w stanie krytycznym, co oznacza, że z punktu widzenia modelowania danych, rozkład prób w poszczególnych klasach (stanach) jest wysoce niezrównoważony. Większość prób należy do stanu normalnego, a mniejszość do stanu krytycznego, co stanowi duże wyzwanie jeśli chodzi o wydajność klasyfikacji. W celu rozwiązania tego problemu, przedstawiono model uczenia zespołowego oparty na algorytmie genetycznym. Ponadto zaprezentowano samoaktualizującą się strategię uczenia wykorzystywaną do monitorowania online, która wraz z upływem czasu zwiększa adaptacyjność i niezawodność modelu . W wielu poprzednich badaniach podejmowano próby ekstrakcji cech oraz ustalania progów dla wskaźników stanu sprzętu. Zaletą przedstawionej metody jest to, że pozwala ona pominąć te etapy i bezpośrednio oceniać stan sprzętu za pomocą proponowanego modelu uczenia zespołowego. Przeprowadzono eksperymenty numeryczne, w tym dwa rodzaje badań porównawczych. Wyniki pokazują większą skuteczność proponowanego modelu w stosunku do poprzednich badań pod względem stabilności i trafności klasyfikacji.
Źródło:
Eksploatacja i Niezawodność; 2019, 21, 1; 68-80
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of a nonlinear tuned mass damper by using the multi-scale method
Autorzy:
Liu, Junfeng
Yao, Ji
Huang, Kun
Zhang, Qing
Ze, Li
Powiązania:
https://bibliotekanauki.pl/articles/2104766.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
nonlinear characteristics
complex average method
multi-scale method
nonlinear design
control performance
Opis:
A tuned mass damper is a kind of vibration damping device which has been widely used in tall buildings, machinery, bridges, aerospace engineering and other fields. In practical engineering applications, due to large deformation caused by large displacement, errors in engineering constructions and the existence of limit devices, the structure and tuned mass dampers inevitably produce some nonlinear characteristics, but these nonlinearities are often ignored. The results of this study confirm that the nonlinearity of the structure and the mass damper should be considered in the process of optimal frequency design, otherwise there will be a large deviation between the design optimal frequency of the mass damper and the actual optimal frequency. In this paper, nonlinear characteristics of the tuned mass damper and the main structure are considered. The first-order differential equations are obtained by using the complex average method, and the nonlinear equations of the tuned mass damper system are derived by using the multi-scale method. On this basis, the parameters are determined. The numerical results show that the error of the approximate solution method is small in the given example. The nonlinear tuned mass damper with nonlinear design exhibits a better control performance.
Źródło:
Journal of Theoretical and Applied Mechanics; 2022, 60, 3; 463--477
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies