Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Zhang, Kexin" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Research on reinforcement technology of existing double-way curved arch bridge
Autorzy:
Zhang, Kexin
Qi, Tianyu
Xue, Xingwei
Li, Yanfeng
Zhu, Zhimin
Powiązania:
https://bibliotekanauki.pl/articles/1852535.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
wzmocnienie
most dwukierunkowy
most łukowy
most zakrzywiony
zwiększenie przekroju
efekt wzmocnienia
croscross-section increasing
reinforcement
two-way bridge
curved bridge
arch bridge
reinforcement effect
Opis:
Two-way curved arch bridges inherit the fine tradition of masonry structures, making full use of the advantages of prefabricated assembly, it adapts to the situation of no support construction and no large lifting machine and tools, and has the characteristics of convenient construction method and saving material consumption. In appearance, the two-way curved arch bridge has strong national cultural characteristics. The prefabricated components of the two-way curved arch bridge are fragmentary, complicated in bearing and poor in integrity. Most of the two-way curved arch bridges in service have been built for a long time and lack of maintenance and management. Increasing the cross-section reinforcement method is one of the two-way curved arch reinforcement methods. It has a significant effect, convenient construction, good rigidity and stability characteristics after the reinforcement. Through theoretical analysis, combined with a static load test results of the assessment of the bridge reinforcement effect. Through load test, it is found that the deflection of the arch rib after reinforcement is reduced by 9%~19% and the strain of the arch rib is reduced by 12%~22%. Through finite element calculation, the crack width of the reinforced arch rib decreases by 8.3%~14.2%. The results show that the stress and deflection are greatly improved by the method of increasing section.
Źródło:
Archives of Civil Engineering; 2021, 67, 2; 581-595
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study on sling replacement of concrete-filled steel tube arch bridge
Autorzy:
Zhang, Kexin
Qi, Tianyu
Xue, Xingwei
Li, Yafeng
Zhu, Zhimin
Powiązania:
https://bibliotekanauki.pl/articles/1852540.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
rura stalowa wypełniona betonem
most łukowy
podwieszenie
obliczenia symulacyjne
monitorowanie
concrete-filled steel tube
arch bridge
sling
simulating computation
monitoring
Opis:
Concrete-filled steel tube arch bridge is filled with concrete inside the steel tube. The radial constraint of the steel tube limits the expansion of the compression concrete, which makes the concrete in the three-way compression state, thus significantly improving the compressive strength of the concrete. At the same time, it can simplify the construction process and shorten the construction period. Since the rapid development of concretefilled steel tubular tied arch bridge in the 1990s, a large number of such Bridges have suffered from the defects of steel concrete, loose tie rod, and hanger rod rust, etc. Therefore, the reinforcement technology for various diseases has been studied, among which the reinforcement technology for hanger rod replacement is the most complicated and more difficult. As more and more bridges of this type enter the period of reinforcement, it is more and more urgent to study the reinforcement technology of suspenders. Taking a bridge that has been in service for 23 years as an example, this paper discusses the construction method and construction monitoring of replacing the suspender, so as to guide the construction monitoring of the bridge. Finally, the construction monitoring results of the bridge are given, which can provide reference for the replacement of the suspender of this type of bridge.
Źródło:
Archives of Civil Engineering; 2021, 67, 2; 597-610
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Seismic performance of horizontal swivel system of asymmetric continuous girder bridge
Autorzy:
Wang, Jiawei
Gao, Hongshuai
Zhang, Kexin
Mo, Zongyun
Wang, Hongchung
Powiązania:
https://bibliotekanauki.pl/articles/2203425.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Opis:
The bridge horizontal swivel system generally adopts a symmetrical structure and uses a spherical hinge structure that can adjust the rotation to complete rotation construction. Because of the complexity of railway lines under bridges, some asymmetrical horizontal swivel systems have been increasingly applied in practical engineering in recent years. This system is more suitable for areas with complex railway lines, reduces the bridge span, and provides better economic benefits. However, it is also extremely unstable. In addition, instability can easily occur under dynamic loads, such as earthquake action and pulsating wind effects. Therefore, it is necessary to study their mechanical behavior. Based on the horizontal swivel system of an 11,000-ton asymmetric continuous girder bridge, the dynamic response of the horizontal swivel system to seismic action was studied using the finite element simulation analysis method. Furthermore, using the Peer database, seismic waves that meet the calculation requirements are screened for time-history analysis and compared to the response spectrum method. The mechanical properties of the structural system during and after rotation were obtained through calculations. During rotation, the seismic response of the structure is greater. To reduce the calculation time cost, an optimization algorithm based on the mode shape superposition method is proposed. The calculation result is 87% that of the time-history analysis, indicating a relatively high calculation accuracy.
Źródło:
Archives of Civil Engineering; 2023, 69, 1; 287--306
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies