- Tytuł:
- Galerkins method of variable directions for parabolic obstacle variational inequalities
- Autorzy:
- Zemła, Adam
- Powiązania:
- https://bibliotekanauki.pl/articles/747741.pdf
- Data publikacji:
- 1983
- Wydawca:
- Polskie Towarzystwo Matematyczne
- Tematy:
-
Methods of Newton-Raphson, Galerkin and Ritz types
Variational inequalities
Finite elements, Rayleigh-Ritz, Galerkin and collocation methods - Opis:
-
.
Author introduction (translated from the Polish): "This paper is an attempt to extend Galerkin's variable directions method ADG, used in the solution of differential equations [see M. Dryja , same journal 15 (1979), 5–23; MR0549983; G. Fairweather , Finite element Galerkin methods for differential equations, Chapter 6, Dekker, New York, 1978; MR0495013] to inequalities. The numerical properties of the scheme of the ADG method are discussed using the example of the following variational problem: Find a function u:(0,T)→K⊂V⊂H such that: (u′+Au−f,v−u)H≥0 for all v∈K and almost all t in [0,T), u(0)=u0, where V and H are Hilbert spaces of functions defined on Ω. The problem studied in this paper is called a parabolic obstacle variational inequality. We restrict ourselves to problems with a symmetric operator A whose coefficients do not depend on the time variable." - Źródło:
-
Mathematica Applicanda; 1983, 11, 23
1730-2668
2299-4009 - Pojawia się w:
- Mathematica Applicanda
- Dostawca treści:
- Biblioteka Nauki