- Tytuł:
- Solution of linear and non-linear boundary value problems using population-distributed parallel differential evolution
- Autorzy:
-
Nasim, Amnah
Burattini, Laura
Fateh, Muhammad Faisal
Zameer, Aneela - Powiązania:
- https://bibliotekanauki.pl/articles/91569.pdf
- Data publikacji:
- 2019
- Wydawca:
- Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
- Tematy:
-
parallel evolutionary algorithms
differential evolution
boundary value problems
optimization - Opis:
- Cases where the derivative of a boundary value problem does not exist or is constantly changing, traditional derivative can easily get stuck in the local optima or does not factually represent a constantly changing solution. Hence the need for evolutionary algorithms becomes evident. However, evolutionary algorithms are compute-intensive since they scan the entire solution space for an optimal solution. Larger populations and smaller step sizes allow for improved quality solution but results in an increase in the complexity of the optimization process. In this research a population-distributed implementation for differential evolution algorithm is presented for solving systems of 2nd-order, 2-point boundary value problems (BVPs). In this technique, the system is formulated as an optimization problem by the direct minimization of the overall individual residual error subject to the given constraint boundary conditions and is then solved using differential evolution in the sense that each of the derivatives is replaced by an appropriate difference quotient approximation. Four benchmark BVPs are solved using the proposed parallel framework for differential evolution to observe the speedup in the execution time. Meanwhile, the statistical analysis is provided to discover the effect of parametric changes such as an increase in population individuals and nodes representing features on the quality and behavior of the solutions found by differential evolution. The numerical results demonstrate that the algorithm is quite accurate and efficient for solving 2nd-order, 2-point BVPs.
- Źródło:
-
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 3; 205-218
2083-2567
2449-6499 - Pojawia się w:
- Journal of Artificial Intelligence and Soft Computing Research
- Dostawca treści:
- Biblioteka Nauki