Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Yang, Junan" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Deep adversarial neural network for specific emitter identification under varying frequency
Autorzy:
Huang, Keju
Yang, Junan
Liu, Hui
Hu, Pengjiang
Powiązania:
https://bibliotekanauki.pl/articles/2173603.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specific emitter identification
unsupervised domain adaptation
transfer learning
deep learning
identyfikacja emitera konkretna
adaptacja domeny nienadzorowana
transfer uczenia się
uczenie głębokie
Opis:
Specific emitter identification (SEI) is the process of identifying individual emitters by analyzing the radio frequency emissions, based on the fact that each device contains unique hardware imperfections. While the majority of previous research focuses on obtaining features that are discriminative, the reliability of the features is rarely considered. For example, since device characteristics of the same emitter vary when it is operating at different carrier frequencies, the performance of SEI approaches may degrade when the training data and the test data are collected from the same emitters with different frequencies. To improve performance of SEI under varying frequency, we propose an approach based on continuous wavelet transform (CWT) and domain adversarial neural network (DANN). The proposed approach exploits unlabeled test data in addition to labeled training data, in order to learn representations that are discriminative for individual emitters and invariant for varying frequencies. Experiments are conducted on received signals of five emitters under three carrier frequencies. The results demonstrate the superior performance of the proposed approach when the carrier frequencies of the training data and the test data differ.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 2; art. no. e136737
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Specific emitter identification based on one-dimensional complex-valued residual networks with an attention mechanism
Autorzy:
Qu, Lingzhi
Yang, Junan
Huang, Keju
Liu, Hui
Powiązania:
https://bibliotekanauki.pl/articles/2086889.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
complex-valued residual network
specific emitter identification
fingerprint characteristic
attention mechanism
one-dimensional convolution
sieć rezydualna o złożonej wartości
specyficzna identyfikacja emiterów
charakterystyka linii papilarnych
mechanizm uwagi
splot jednowymiarowy
Opis:
Specific emitter identification (SEI) can distinguish single-radio transmitters using the subtle features of the received waveform. Therefore, it is used extensively in both military and civilian fields. However, the traditional identification method requires extensive prior knowledge and is time-consuming. Furthermore, it imposes various effects associated with identifying the communication radiation source signal in complex environments. To solve the problem of the weak robustness of the hand-crafted feature method, many scholars at home and abroad have used deep learning for image identification in the field of radiation source identification. However, the classification method based on a real-numbered neural network cannot extract In-phase/Quadrature (I/Q)-related information from electromagnetic signals. To address these shortcomings, this paper proposes a new SEI framework for deep learning structures. In the proposed framework, a complex-valued residual network structure is first used to mine the relevant information between the in-phase and orthogonal components of the radio frequency baseband signal. Then, a one-dimensional convolution layer is used to a) directly extract the features of a specific one-dimensional time-domain signal sequence, b) use the attention mechanism unit to identify the extracted features, and c) weight them according to their importance. Experiments show that the proposed framework having complex-valued residual networks with attention mechanism has the advantages of high accuracy and superior performance in identifying communication radiation source signals.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 5; e138814, 1--10
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep adversarial neural network for specific emitter identification under varying frequency
Autorzy:
Huang, Keju
Yang, Junan
Liu, Hui
Hu, Pengjiang
Powiązania:
https://bibliotekanauki.pl/articles/2128144.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specific emitter identification
unsupervised domain adaptation
transfer learning
deep learning
identyfikacja emitera konkretna
adaptacja domeny nienadzorowana
transfer uczenia się
uczenie głębokie
Opis:
Specific emitter identification (SEI) is the process of identifying individual emitters by analyzing the radio frequency emissions, based on the fact that each device contains unique hardware imperfections. While the majority of previous research focuses on obtaining features that are discriminative, the reliability of the features is rarely considered. For example, since device characteristics of the same emitter vary when it is operating at different carrier frequencies, the performance of SEI approaches may degrade when the training data and the test data are collected from the same emitters with different frequencies. To improve performance of SEI under varying frequency, we propose an approach based on continuous wavelet transform (CWT) and domain adversarial neural network (DANN). The proposed approach exploits unlabeled test data in addition to labeled training data, in order to learn representations that are discriminative for individual emitters and invariant for varying frequencies. Experiments are conducted on received signals of five emitters under three carrier frequencies. The results demonstrate the superior performance of the proposed approach when the carrier frequencies of the training data and the test data differ.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 2; e136737, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies