Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Yan, Guohua" wg kryterium: Autor


Wyświetlanie 1-7 z 7
Tytuł:
A convolutional neural network-based method of inverter fault diagnosis in a ship’s DC electrical system
Autorzy:
Yan, Guohua
Hu, Yihuai
Shi, Qingguo
Powiązania:
https://bibliotekanauki.pl/articles/32898224.pdf
Data publikacji:
2022
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
multi-energy hybrid ships
inverters
fault diagnosis
CNN
Opis:
Multi-energy hybrid ships are compatible with multiple forms of new energy, and have become one of the most important directions for future developments in this field. A propulsion inverter is an important component of a hybrid DC electrical system, and its reliability has great significance in terms of safe navigation of the ship. A fault diagnosis method based on one-dimensional convolutional neural network (CNN) is proposed that considers the mutual influence between an inverter fault and a limited ship power grid. A tiled voltage reduction method is used for one-to-one correspondence between the inverter output voltage and switching combinations, followed by a combination of a global average pooling layer and a fully connected layer to reduce the model overfitting problem. Finally, fault diagnosis is verified by a Softmax layer with good anti-interference performance and accuracy.
Źródło:
Polish Maritime Research; 2022, 4; 105-114
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel fault diagnosis method for marine blower with vibration signals
Autorzy:
Yan, Guohua
Hu, Yihuai
Jiang, Jiawei
Powiązania:
https://bibliotekanauki.pl/articles/32899234.pdf
Data publikacji:
2022
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
fault diagnosis
marine blower
EEMD
correlation coefficient
AR spectrum
BPNN
Opis:
The vibration signals on marine blowers are non-linear and non-stationary. In addition, the equipment in marine engine room is numerous and affects each other, which makes it difficult to extract fault features of vibration signals in the time domain. This paper proposes a fault diagnosis method based on the combination of Ensemble Empirical Mode Decomposition (EEMD), an Autoregressive model (AR model) and the correlation coefficient method. Firstly, a series of Intrinsic Mode Function (IMF) components were obtained after the vibration signal was decomposed by EEMD. Secondly, effective IMF components were selected by the correlation coefficient method. AR models were established and the power spectrum was analysed. It was verified that blower failure can be accurately diagnosed. In addition, an intelligent diagnosis method was proposed based on the combination of EEMD energy and a Back Propagation Neural Network (BPNN), with a correlation coefficient method to get effective IMF components, and the energy components were calculated, normalised as a feature vector. Finally, the feature vector was sent to the BPNN for training and state recognition. The results indicated that the EEMD-BPNN intelligent fault diagnosis method is suitable for higly accurate fault diagnosis of marine blowers.
Źródło:
Polish Maritime Research; 2022, 2; 77-86
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault diagnosis of me marine diesel engine fuel injector with novel IRCMDE method
Autorzy:
Shi, Qingguo
Hu, Yihuai
Yan, Guohua
Powiązania:
https://bibliotekanauki.pl/articles/34608122.pdf
Data publikacji:
2023
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
marine diesel engine
fuel injector
improved refined composite multi-scale dispersion entropy
fault diagnosis
Opis:
As an important component of the fuel injection system, the fuel injector is crucial for ensuring the power, economy, and emissions for a whole ME (machine electronically-controlled) marine diesel engine. However, injectors are most prone to failures such as reduced pressure at the opening valve, clogged spray holes and worn needle valves, because of the harsh working conditions. The failure characteristics are non-stationary and non-linear. Therefore, to efficiently extract fault features, an improved refined composite multi-scale dispersion entropy (IRCMDE) is proposed, which uses the energy distribution of sampling points as weights for coarse-grained calculation, then fast correlation-based filter (FCBF) and support vector machine (SVM) are used for feature selection and fault classification, respectively. The experimental results from a MAN B&W 6S35ME-B9 marine diesel engine show that the proposed algorithm can achieve 92.12% fault accuracy for injector faults, which is higher than multiscale dispersion entropy (MDE), refined composite multiscale dispersion entropy (RCMDE) and multiscale permutation entropy (MPE). Moreover, the experiment has also proved that, due to the double-walled structure of the high-pressure fuel pipe, the fuel injection pressure signal is more accurate than the vibration signal in reflecting the injector operating conditions.
Źródło:
Polish Maritime Research; 2023, 3; 96-110
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hierarchical multiscale fluctuation dispersion entropy for fuel injection system fault diagnosis
Autorzy:
Shi, Qingguo
Hu, Yihuai
Yan, Guohua
Powiązania:
https://bibliotekanauki.pl/articles/32915909.pdf
Data publikacji:
2023
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
hierarchical multiscale fluctuation dispersion entropy
fuel injection system
support matrix machine
fault diagnosis
Opis:
Marine electronically controlled (ME) two-stroke diesel engines occupy the highest market share in newly-built ships and its fuel injection system is quite different and important. Fault diagnosis in the fuel injection system is crucial to ensure the power, economy and emission of ME diesel engines, so we introduce hierarchical multiscale fluctuation dispersion entropy (HMFDE) and a support matrix machine (SMM) to realise it. We also discuss the influence of parameter changes on the entropy calculation’s accuracy and efficiency. The system simulation model is established and verified by Amesim software, and then HMFDE is used to extract a matrix from the features of a high pressure signal in a common rail pipe, under four working conditions. Compared with vectorised HMFDE, the accuracy of fault diagnosis using SMM is nearly 3% higher than that using a support vector machine (SVM). Experiments also show that the proposed method is more accurate and stable when compared with hierarchical multiscale dispersion entropy (HMDE), hierarchical dispersion entropy (HDE), multiscale fluctuation dispersion entropy (MFDE), multiscale dispersion entropy (MDE) and multiscale sample entropy (MSE). Therefore, the proposed method is more suitable for the modelling data. This research provides a new direction for matrix learning applications in fault diagnosis in marine two-stroke diesel engines.
Źródło:
Polish Maritime Research; 2023, 1; 98-111
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault diagnosis of bearings based on SSWT, bayes optimisation and CNN
Autorzy:
Yan, Guohua
Hu, Yihuai
Shi, Qingguo
Powiązania:
https://bibliotekanauki.pl/articles/34610052.pdf
Data publikacji:
2023
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
fault diagnosis
bearing
PMSM
bayesian optimisation
CNN
Opis:
Bearings are important components of rotating machinery and transmission systems, and are often damaged by wear, overload and shocks. Due to the low resolution of traditional time-frequency analysis for the diagnosis of bearing faults, a synchrosqueezed wavelet transform (SSWT) is proposed to improve the resolution. An improved convolutional neural network fault diagnosis model is proposed in this paper, and a Bayesian optimisation method is applied to automatically adjust the structure and hyperparameters of the model to improve the accuracy of bearing fault diagnosis. Experimental results from the accelerated life testing of bearings show that the proposed method is able to accurately identify various types of bearing fault and the different status of these faults under complex running conditions, while achieving very good generalisation ability.
Źródło:
Polish Maritime Research; 2023, 3; 132-141
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning-based fault diagnosis for marine centrifugal fan
Autorzy:
Li, Congyue
Hu, Yihuai
Jiang, Jiawei
Yan, Guohua
Powiązania:
https://bibliotekanauki.pl/articles/32917700.pdf
Data publikacji:
2023
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
CEEMDAN
fault diagnosis
lightweight neural network
marine centrifugal fan
Opis:
Marine centrifugal fans usually work in harsh environments. Their vibration signals are non-linear. The traditional fault diagnosis methods of fans require much calculation and have low operating efficiency. Only shallow fault features can be extracted. As a result, the diagnosis accuracy is not high. It is difficult to realize the end-to-end fault diagnosis. Combining the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and lightweight neural network, a fault classification method is proposed. First, the CEEMDAN can decompose the vibration signal into several intrinsic modal functions (IMF). Then, the original signals can be transformed into 2-D images through pseudocolour coding of the IMFs. Finally, they are fed into the lightweight neural network for fault diagnosis. By embedding a convolutional block attention module (CBAM), the ability of the network to extract critical feature information is improved. The results show that the proposed method can adaptively extract the fault characteristics of a marine centrifugal fan. While the model is lightweight, the overall diagnostic accuracy can reach 99.3%. As exploratory basic research, this method can provide a reference for intelligent fault diagnosis systems on ships.
Źródło:
Polish Maritime Research; 2023, 1; 112-120
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improved flotation of auriferous arsenopyrite by using a novel mixed collector in weakly alkaline pulp
Autorzy:
Wang, Xiaohui
Zhao, Kaile
Bo, Hui
Yan, Wu
Wang, Zhen
Gu, Guohua
Gao, Zhiyong
Powiązania:
https://bibliotekanauki.pl/articles/1845220.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
gold mine
arsenopyrite
mixed collector
flotation
Opis:
The purpose of using a mixed collector is to increase both flotation efficiency and selectivity. The mixed collector of potassium isopentyldithiocarbonate and N-dodecyl mercaptan exhibits high efficiency for the flotation of auriferous arsenopyrite, and the 2:1 mixing mass ratio of potassium isopentyldithiocarbonate and N-dodecyl mercaptan is preferred. Batch flotation tests indicate that a concentrate with the grade of 47.58 g/Mg Au and the recovery of 86.45% Au is achieved by using the mixed potassium isopentyldithiocarbonate/N-dodecyl mercaptan in weakly alkaline pulp. The collector mixture potassium isopentyldithiocarbonate + N-dodecyl mercaptan has greater adsorption density on the arsenopyrite surface than other conventional mixed collectors. The mixed potassium isopentyldithiocarbonate/N-dodecyl mercaptan can adsorb onto the arsenopyrite surface by intense chemisorptions, and the Sulfur-Iron chemical complexation is considered as the main adsorption mode. This is the reason why mixed potassium isopentyldithiocarbonate and N-dodecyl mercaptan collector can improve the flotation efficiency of auriferous sulfides.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 5; 996-1004
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies