Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Xinyun, Zhu" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
A Semi-Supervised Siamese Network for Complex Aircraft System Fault Detection with Limited Labeled Fault Samples
Autorzy:
Xinyun, Zhu
Sun, Jianzhong
Hu, Hanchun
Li, Chunhua
Powiązania:
https://bibliotekanauki.pl/articles/28086935.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
fault detection
semi-supervised
aircraft system
flight data
time-series data
Opis:
Health monitoring and fault detection of complex aircraft systems are paramount for ensuring reliable and efficient operation. The availability of monitoring data from modern aircraft onboard sensors provides a wealth of big data for developing deep learning-based fault detection methods. However, aircraft onboard systems typically have limited labeled fault samples and large amounts of unlabeled data. To better utilize the information contained in limited labeled fault samples, a deep learning-based semi-supervisedfault detection method is proposed, which leverages a small number of labeled fault samples to enhance its performance. A novel sample pairing strategy is introduced to improve algorithm performance by iteratively utilizing fault samples. A comprehensive loss function is employed to accurately reconstruct normal samples and effectively separate fault samples. The results of a case study using real data from a commercial aircraft fleet demonstrate the superiority of the proposed method over existing techniques, with improvements of approximately 16.7% in AP, 9.5% in AUC, and 19.2% in F1 score. Ablation studies confirm that performance can be further improved by incorporating additional labeled fault samples during training. Furthermore, the algorithm demonstrates good generalization ability.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 4; art. no. 174382
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies