- Tytuł:
- Hereditary Equality of Domination and Exponential Domination in Subcubic Graphs
- Autorzy:
-
Chen, Xue-Gang
Wang, Yu-Feng
Wu, Xiao-Fei - Powiązania:
- https://bibliotekanauki.pl/articles/32324524.pdf
- Data publikacji:
- 2021-11-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
dominating set
exponential dominating set
subcubic graphs - Opis:
- Let γ(G) and γe(G) denote the domination number and exponential domination number of graph G, respectively. Henning et al., in [Hereditary equality of domination and exponential domination, Discuss. Math. Graph Theory 38 (2018) 275–285] gave a conjecture: There is a finite set ℱ of graphs such that a graph G satisfies (H) = γe(H) for every induced subgraph H of G if and only if G is ℱ-free. In this paper, we study the conjecture for subcubic graphs. We characterize the class ℱ by minimal forbidden induced subgraphs and prove that the conjecture holds for subcubic graphs.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2021, 41, 4; 1067-1075
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki