- Tytuł:
- On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem
- Autorzy:
- Wong, Peter
- Powiązania:
- https://bibliotekanauki.pl/articles/1215078.pdf
- Data publikacji:
- 1992
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
fixed points
coincidences
roots
Lefschetz number
Nielsen number - Opis:
- Let $f,g:M_1 → M_2$ be maps where $M_1$ and $M_2$ are connected triangulable oriented n-manifolds so that the set of coincidences $C_{f,g}= {x ∈ M_1 | f(x)=g(x)}$ is compact in $M_1$. We define a Nielsen equivalence relation on $C_{f,g}$ and assign the coincidence index to each Nielsen coincidence class. In this note, we show that, for n ≥ 3, if $M_2= \widetilde M_2/K$ where $\widetilde M_2$ is a connected simply connected topological group and K is a discrete subgroup then all the Nielsen coincidence classes of f and g have the same coincidence index. In particular, when $M_1$ and $M_2$ are compact, f and g are deformable to be coincidence free if the Lefschetz coincidence number L(f,g) vanishes.
- Źródło:
-
Fundamenta Mathematicae; 1991-1992, 140, 2; 191-196
0016-2736 - Pojawia się w:
- Fundamenta Mathematicae
- Dostawca treści:
- Biblioteka Nauki