Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Witaszek, Kazimierz" wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Modeling of fuel consumption using artificial neural networks
Modelowanie zużycia paliwa przy pomocy sztucznych sieci neuronowych
Autorzy:
Witaszek, Kazimierz
Powiązania:
https://bibliotekanauki.pl/articles/329548.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
fuel consumption
modeling
artificial neural network
SNNS
OBDII data
zużycie paliwa
modelowanie
sztuczne sieci neuronowe
dane OBDII
Opis:
The article presents a model of operational fuel consumption by a passenger car from the B segment, powered by a spark ignition engine. The model was developed using artificial neural networks simulated in the Stuttgart Neural Network Simulator (SNNS) package. The data for the model was obtained from longterm operational tests, during which data from the engine control unit were recorded via the OBDII diagnostic interface. The model is based on neural networks with two hidden layers, the size of which was selected using an original iterative algorithm. During the structure selection process, a total of 576 different networks were tested. The analysis of the obtained test errors made it possible to select the optimal structure of the 6-19-17-1 model. The network input values were: vehicle speed and acceleration, road slope, throttle opening degree, selected gear number and engine speed. The networks were trained using the efficient RPROP method. A correctly trained network, based on the set parameters, was able to forecast the instantaneous fuel consumption. These forecasts showed a high correlation with the measured values. Average fuel consumption calculated on their basis was close to the real value, which was calculated on the basis of two consecutive fuelings of the vehicle.
W artykule przedstawiono model eksploatacyjnego zużycia paliwa przez samochód osobowy z segmentu B, zasilany silnikiem o zapłonie iskrowym. Model opracowano przy wykorzystaniu sztucznych sieci neuronowych, których działanie symulowano w pakiecie Stuttgart Neural Network Simulator (SNNS). Dane do modelu pozyskano z długotrwałych badań eksploatacyjnych, podczas których rejestrowano przez interfejs diagnostyczny OBDII dane pochodzące z jednostki sterującej silnikiem. Model oparto na sieciach neuronowych o dwu warstwach ukrytych, których wielkość dobrano przy pomocy autorskiego, iteracyjnego algorytmu. Podczas procesu doboru struktury przebadano łącznie 576 różnych sieci. Analiza uzyskanych błędów testowania pozwoliła na wybór optymalnej struktury modelu 6-19-17-1. Wielkościami wejściowymi sieci były: prędkość i przyspieszenie pojazdu, nachylenie drogi, stopień otwarcia przepustnicy, numer wybranego biegu oraz prędkość obrotowa silnika. Sieci uczono przy użyciu wydajnej metody RPROP. Poprawnie nauczona sieć na podstawie zadanych parametrów była w stanie prognozować chwilowe zużycie paliwa. Prognozy te wykazywały wysoką korelację ze zmierzonymi wartościami. Obliczone na ich podstawie średnie zużycie paliwa było zbliżone do rzeczywistej wartości, którą obliczono na podstawie dwu kolejnych tankowań pojazdu.
Źródło:
Diagnostyka; 2020, 21, 4; 103-113
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnosing the thermostat using vehicle on-board diagnostic (OBD) data
Autorzy:
Witaszek, Kazimierz
Witaszek, Mirosław
Powiązania:
https://bibliotekanauki.pl/articles/27313825.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
thermostat
diagnostics
malfunction
coolant temperature
fuel consumption
termostat
zużycie paliwa
diagnostyka
temperatura płynu chłodzącego
Opis:
The thermostat is a crucial component of a car's internal combustion engine's cooling system. Failure of the thermostat can result in undercooling or overheating of the engine. Undercooling may increase wear of engine components due to poor lubrication and lead to higher fuel consumption. Conversely, overheating can damage the engine. The engine coolant temperature is one of the fundamental parameters for the proper functioning of the engine. The vehicle's onboard diagnostics system was unable to detect the malfunction of the thermostat. As a consequence, fuel consumption increased, which was especially noticeable in winter. This paper evaluates the possibility of carrying out thermostat diagnostics using data obtained from the OBD system through a diagnostic interface ELM327, which is connected to the OBD-II connector and interfaced with Torque Pro software on a smartphone. Analysis of the data confirmed that the proposed diagnostic method was appropriate. Furthermore, the impact of the thermostat malfunction on different factors such as coolant temperature, cold engine warm-up time, parameters characterising thermostat cycling, and fuel consumption of the car were studied. It was found that, apart from the already mentioned decrease in coolant temperature, the thermostat hysteresis also decreased and the thermostat cycle time increased.
Źródło:
Diagnostyka; 2023, 24, 4; art. no. 2023402
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wear of Railway Tyre Steels Modelling Using Artificial Neural Networks
Modelowanie zużycia stali na obręcze kół kolejowych za pomocą sztucznych sieci neuronowych
Autorzy:
Witaszek, Mirosław
Witaszek, Kazimierz
Powiązania:
https://bibliotekanauki.pl/articles/1857830.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
wear
tyre steels
artificial neural networks
modelling
zużycie
stale na obręcze kół kolejowych
sztuczne sieci neuronowe
modelowanie
Opis:
In the paper the results of sliding wear tests were used to model the dependence of steel volume loss on railway wheel tyres on selected material parameters and sliding conditions. The material properties included in this modelling were the hardness and chemical composition of the tyre material (specimens) and the hardness of the mating material (counter-specimens). The conditions for sliding were the initial maximum Hertzian pressure and the sliding distance. The tests were carried out in the ring-block system. Artificial neural networks were used for modelling. It was found that the constructed model made it possible to quantify the volume loss from the above–mentioned factors. A clear influence of the pressure, friction distance, and hardness of both cooperating materials on the studied wear was found. The influence of the chemical composition is less noticeable due to the rather narrow range of its allowable changes. The microscopic tests allowed us to identify the main wear mechanisms in the sliding friction of the tested tyre and rail steels.
W pracy przedstawiono wykorzystanie wyników badań zużycia przy tarciu ślizgowym do modelowania zależności zużycia objętościowego stali na obręcze kół kolejowych od wybranych parametrów materiału i warunków współpracy. Własnościami materiału uwzględnionymi w tym modelowaniu były twardość oraz skład chemiczny materiału obręczy (próbki) oraz twardość materiału współpracującego (przeciwpróbki). Warunkami współpracy były początkowy, maksymalny nacisk Hertza i droga tarcia. Badania przeprowadzono w układzie klocek–krążek. Do modelowania wykorzystano sztuczne sieci neuronowe. Stwierdzono, że zbudowany model pozwolił na określenie zależności ilościowych ubytku objętościowego od wyżej wymienionych czynników. Wskazano występowanie wyraźnego wpływ nacisku, drogi tarcia, twardości obu współpracujących materiałów na badane zużycie. Wpływ składu chemicznego jest mniej zauważalny z powodu dość wąskiego zakresu dopuszczalnych jego zmian. Badania mikroskopowe pozwoliły na zidentyfikowanie głównych mechanizmów zużywania przy tarciu ślizgowym badanych stali obręczowych i szynowej.
Źródło:
Tribologia; 2020, 294, 6; 77-85
0208-7774
Pojawia się w:
Tribologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of neural networks structure selection in modelling spheroidal graphite cast iron for automotive camshafts
Optymalizacja doboru struktury sztucznych sieci neuronowych w modelowaniu zużycia żeliwa sferoidalnego na samochodowe wałki rozrządu
Autorzy:
Witaszek, Kazimierz
Garbala, Krzysztof
Witaszek, Mirosław
Rychter, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/317234.pdf
Data publikacji:
2019
Wydawca:
Instytut Naukowo-Wydawniczy "SPATIUM"
Tematy:
artificial neural networks
structure optimization
wear
spheroidal cast iron
Stuttgart neural network simulator
resilient back-PROPagation
sztuczne sieci neuronowe
optymalizacja struktury
zużycie
żeliwo sferoidalne
resilient back-ROPagation
Opis:
The present article discusses the process of optimizing the structure of artificial neural networks applied in modelling the wear of spheroidal graphite cast iron (SG cast iron). The networks were trained using the RPROP gradient method with the application of the SNNS package supported by original self-developed software, which enabled automatic creation, training and testing of networks with different sizes of hidden layers. Based on the results of an analysis of learning process and testing a package of 625 networks, the network was selected which – when modelling the process of spheroidal cast iron wear – generates the slightest errors during testing.
W pracy przedstawiono proces optymalizacji struktury sztucznych sieci neuronowych użytych do modelowania zużycia żeliwa sferoidalnego. Sieci uczono metodą gradientową RPROP przy użyciu pakietu SNNS wspomaganego autorskim oprogramowaniem, które umożliwiało automatyczne tworzenie, uczenie i testowanie sieci o różnych wielkości warstw ukrytych. Na podstawie analizy wyników procesu uczenia i testowania pakietu 625 sieci dobrano tę, która modelując proces zużycia żeliwa sferoidalnego generuje najmniejsze błędy podczas testowania.
Źródło:
Autobusy : technika, eksploatacja, systemy transportowe; 2019, 20, 12; 215-220
1509-5878
2450-7725
Pojawia się w:
Autobusy : technika, eksploatacja, systemy transportowe
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies