Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wismath, Shelly" wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Generalized inflations and null extensions
Autorzy:
Wang, Qiang
Wismath, Shelly
Powiązania:
https://bibliotekanauki.pl/articles/729115.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
inflation
generalized inflation
null extension
variety of semigroups
bands
Opis:
An inflation of an algebra is formed by adding a set of new elements to each element in the original or base algebra, with the stipulation that in forming products each new element behaves exactly like the element in the base algebra to which it is attached. Clarke and Monzo have defined the generalized inflation of a semigroup, in which a set of new elements is again added to each base element, but where the new elements are allowed to act like different elements of the base, depending on the context in which they are used. Such generalized inflations of semigroups are closely related to both inflations and null extensions. Clarke and Monzo proved that for a semigroup base algebra which is a union of groups, any semigroup null extension must be a generalized inflation, so that the concepts of null extension and generalized inflation coincide in the case of unions of groups. As a consequence, the collection of all associative generalized inflations formed from algebras in a variety of unions of groups also forms a variety.
In this paper we define the concept of a generalized inflation for any type of algebra. In particular, we allow for generalized inflations of semigroups which are no longer semigroups themselves. After some general results about such generalized inflations, we characterize for several varieties of bands which null extensions of algebras in the variety are generalized inflations, and which of these are associative. These characterizations are used to produce examples which answer, in our more general setting, several of the open questions posed by Clarke and Monzo.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2004, 24, 2; 225-249
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Galois correspondence between subvariety lattices and monoids of hpersubstitutions
Autorzy:
Denecke, Klaus
Hyndman, Jennifer
Wismath, Shelly
Powiązania:
https://bibliotekanauki.pl/articles/728896.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hypersubstitutions
hyperidentities
M-hyperidentities
monoids of hypersubstitutions
varieties
solid varieties
M-solid varieties of bands
Galois correspondence
Opis:
Denecke and Reichel have described a method of studying the lattice of all varieties of a given type by using monoids of hypersubstitutions. In this paper we develop a Galois correspondence between monoids of hypersubstitutions of a given type and lattices of subvarieties of a given variety of that type. We then apply the results obtained to the lattice of varieties of bands (idempotent semigroups), and study the complete sublattices of this lattice obtained through the Galois correspondence.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2000, 20, 1; 21-36
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The semantical hyperunification problem
Autorzy:
Denecke, Klaus
Koppitz, Jörg
Wismath, Shelly
Powiązania:
https://bibliotekanauki.pl/articles/728730.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hypersubstitution
fully invariant congruence relation
hyperunification problem
Opis:
A hypersubstitution of a fixed type τ maps n-ary operation symbols of the type to n-ary terms of the type. Such a mapping induces a unique mapping defined on the set of all terms of type t. The kernel of this induced mapping is called the kernel of the hypersubstitution, and it is a fully invariant congruence relation on the (absolutely free) term algebra $F_{τ}(X)$ of the considered type ([2]). If V is a variety of type τ, we consider the composition of the natural homomorphism with the mapping induced by a hypersubstitution. The kernel of this mapping is called the semantical kernel of the hypersubstitution with respect to the given variety. If the pair (s,t) of terms belongs to the semantical kernel of a hypersubstitution, then this hypersubstitution equalizes s and t with respect to the variety. Generalizing the concept of a unifier, we define a semantical hyperunifier for a pair of terms with respect to a variety. The problem of finding a semantical hyperunifier with respect to a given variety for any two terms is then called the semantical hyperunification problem.
We prove that the semantical kernel of a hypersubstitution is a fully invariant congruence relation on the absolutely free algebra of the given type. Using this kernel, we define three relations between sets of hypersubstitutions and sets of varieties and introduce the Galois correspondences induced by these relations. Then we apply these general concepts to varieties of semigroups.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2001, 21, 2; 175-200
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
k-Normalization and (k+1)-level inflation of varieties
Autorzy:
Cheng, Valerie
Wismath, Shelly
Powiązania:
https://bibliotekanauki.pl/articles/728838.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
k-normal identities
k-normalization of a variety
(k+1)-level inflation of algebras
Opis:
Let τ be a type of algebras. A common measurement of the complexity of terms of type τ is the depth of a term. For k ≥ 1, an identity s ≈ t of type τ is said to be k-normal (with respect to this depth complexity measurement) if either s = t or both s and t have depth ≥ k. A variety is called k-normal if all its identities are k-normal. Taking k = 1 with respect to the usual depth valuation of terms gives the well-known property of normality of identities or varieties. For any variety V, there is a least k-normal variety $N_k(V)$ containing V, the variety determined by the set of all k-normal identities of V. The concept of k-normalization was introduced by K. Denecke and S.L. Wismath in [5], and an algebraic characterization of the elements of $N_k(V)$ in terms of the algebras in V was given in [4]. In [1] a simplified version of this characterization of $N_k(V)$ was given, in the special case of the 2-normalization of the variety V of all lattices, using a construction called the 3-level inflation of a lattice. In this paper we show that the analogous (k+1)-level inflation can be used to characterize the algebras of $N_k(V)$ for any variety V having a unary term which satisfies two technical conditions. This includes any variety V which satisfies x ≈ t(x) for some unary term t of depth at least k, and in particular any variety, such as the variety of lattices, which satisfies an idempotent identity.
Źródło:
Discussiones Mathematicae - General Algebra and Applications; 2008, 28, 1; 49-62
1509-9415
Pojawia się w:
Discussiones Mathematicae - General Algebra and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies