Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wieloch, B." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Ivan Avgustovich Time - precursor of scientific approach to wood machining
Ivan Time prekursor naukowego podejścia do obróbki drewna
Autorzy:
Wieloch, G.
Porankiewicz, B.
Powiązania:
https://bibliotekanauki.pl/articles/7892.pdf
Data publikacji:
2015
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Źródło:
Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology; 2015, 90
1898-5912
Pojawia się w:
Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cross-task code reuse in genetic programming applied to visual learning
Autorzy:
Jaśkowski, W.
Krawiec, K.
Wieloch, B.
Powiązania:
https://bibliotekanauki.pl/articles/330367.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
genetic programming
code reuse
knowledge sharing
visual learning
multi task learning
optical character recognition
programowanie genetyczne
dzielenie się wiedzą
uczenie wizualne
optyczne rozpoznawanie znaków
Opis:
We propose a method that enables effective code reuse between evolutionary runs that solve a set of related visual learning tasks. We start with introducing a visual learning approach that uses genetic programming individuals to recognize objects. The process of recognition is generative, i.e., requires the learner to restore the shape of the processed object. This method is extended with a code reuse mechanism by introducing a crossbreeding operator that allows importing the genetic material from other evolutionary runs. In the experimental part, we compare the performance of the extended approach to the basic method on a real-world task of handwritten character recognition, and conclude that code reuse leads to better results in terms of fitness and recognition accuracy. Detailed analysis of the crossbred genetic material shows also that code reuse is most profitable when the recognized objects exhibit visual similarity.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 1; 183-197
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies