Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wegener, Konrad" wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Monitoring of the average cutting forces from controller signals using artificial neural networks
Autorzy:
Bugdayci, Nevzat Bircan
Wegener, Konrad
Postel, Martin
Powiązania:
https://bibliotekanauki.pl/articles/2171771.pdf
Data publikacji:
2022
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
milling
cutting force monitoring
artificial neural network
Opis:
A new approach is presented to monitor the average cutting forces that are used for the calculation of the average cutting coefficients through neural networks using available controller signals. The cutting forces and the relevant controller signals are measured using a dynamometer and commercially available software supplied by the controller manufacturer in the calibration stage. Then a neural network is trained, which treats these controller signals as inputs and the cutting forces as the outputs. Finally, the average cutting forces for a new milling operation are predicted using the trained neural network without using a dynamometer. The proposed approach is validated using an experimental study, where a good match between predictions and measured forces is achieved. It is also shown that cutting coefficients can be calibrated and stability lobe diagrams can be generated using this method.
Źródło:
Journal of Machine Engineering; 2022, 22, 4; 54--70
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automated evaluation of continuous and segmented chip geometries based on image processing methods and a convolutional neural network
Autorzy:
Klippel, Hagen
Pflaum, Samuel
Kuffa, Michal
Wegener, Konrad
Powiązania:
https://bibliotekanauki.pl/articles/2171775.pdf
Data publikacji:
2022
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
machining
AI
computer vision
image processing
chip
chip shape
chip segmentation
Opis:
The aim of this work is to present a new methodology for the automated analysis of the cross-sections of experimental chip shapes. It enables, based on image processing methods, the determination of average chip thicknesses, chip curling radii and for segmented chips the extraction of chip segmentation lengths, as well as minimum and maximum chip thicknesses. To automatically decide whether a chip at hand should be evaluated using the proposed methods for continuous or segmented chips, a convolutional neural network is proposed, which is trained using supervised learning with available images from embedded chip cross-sections. Data from manual measurements are used for comparison and validation purposes.
Źródło:
Journal of Machine Engineering; 2022, 22, 4; 115--132
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Operator integrated – concept for manufacturing intelligence
Autorzy:
Wegener, Konrad
Weikert, Sascha
Mayr, Josef
Maier, Markus
Ali Akbari, Vahid Ostad
Postel, Martin
Powiązania:
https://bibliotekanauki.pl/articles/2052207.pdf
Data publikacji:
2021
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
machine tool
communication
self-learning
autonomy
artificial operator
Opis:
Increasing autonomy and sustainability are major goals in manufacturing. Main technological trends provide enablers for achieving these goals and need to be implemented and combined in manufacturing machinery in a suitable manner. The paper exposes a vision of modern manufacturing machines, where the complexity of manufacturing processes is handled within the manufacturing machine and a simplistic front end is presented to the operator, which means that major elements of operators’ tasks are fulfilled by the intelligence of the machine. Research vectors paving the ground for this concept from different points of view are then discussed. Research is presented on intelligent grinding, intelligent recognition and suppression of chatter, adaptive thermal and motion error compensation exploting also self-learning abilities. It is necessary to point out, that not only intelligent mastering of process and machine becomes more and more important but communications among machine tools enabling process chain overarching intelligent approaches and creating intelligent factories.
Źródło:
Journal of Machine Engineering; 2021, 21, 4; 5-28
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cutting force prediction of Ti6Al4V using a machine learning model of SPH orthogonal cutting process simulations
Autorzy:
Klippel, Hagen
Sanchez, Eduardo Gonzalez
Isabel, Margolis
Röthlin, Matthias
Afrasiabi, Mohamadreza
Michal, Kuffa
Wegener, Konrad
Powiązania:
https://bibliotekanauki.pl/articles/2052187.pdf
Data publikacji:
2022
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
machining
Ti6Al4V
machine learning
SPH
smoothed particle hydrodynamics
meshfree method
Opis:
The prediction of machining processes is a challenging task and usually requires a large experimental basis. These experiments are time-consuming and require manufacturing and testing of different tool geometries at various process conditions to find optimum machining settings. In this paper, a machine learning model of the orthogonal cutting process of Ti6Al4V is proposed to predict the cutting and feed forces for a wide range of process conditions with regards to rake angle, clearance angle, cutting edge radius, feed and cutting speed. The model uses training data generated by virtual experiments, which are conducted using physical based simulations of the orthogonal cutting process with the smoothed particle hydrodynamics (SPH). The ML training set is composed of input parameters, and output process forces from 2500 instances of GPU accelerated SPH simulations. The resulting model provides fast process force predictions and can consider the cutter geometry in comparison to classical analytical approaches.
Źródło:
Journal of Machine Engineering; 2022, 22, 1; 111-123
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies