Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wang, Zhihua" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Accelerated degradation analysis based on a random-effect Wiener process with one-order autoregressive errors
Przyspieszona analiza degradacji w oparciu o proces Wienera z efektem losowym z błędami autoregresyjnymi pierwszego rzędu
Autorzy:
Li, Junxing
Wang, Zhihua
Liu, Chengrui
Qiu, Ming
Powiązania:
https://bibliotekanauki.pl/articles/301246.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
reliability evaluation
accelerated degradation modeling
Wiener process
unit-to-unit variability
measurement errors
ocena niezawodności
przyspieszone modelowanie degradacji
proces Wienera
zmienność między jednostkami
błędy pomiaru
Opis:
For highly reliable and long-life products, accelerated degradation test (ADT) is often an effective and attractive way to assess the reliability. To analyze the accelerated degradation data, it has been well recognized that it is necessary to incorporate three sources of variability including the temporal variability, the unit-to-unit variability and measurement errors into the ADT model. The temporal variability can be properly described by the Wiener process. However, the randomness of the initial degradation level, which is an important part of the unit-to-unit variability, has been often neglected. In addition, regarding the measurement errors, current ADT models often assumed them to follow a mutually independent normal distribution and ignored the autocorrelation that may probably exist in them. These problems lead to a poor accuracy for reliability evaluation in some situation. Thus, a random-effect Wiener process-based ADT model considering one-order autoregressive (AR(1)) errors is proposed. Then closed-form expressions for the failure time distribution (FTD) is derived based on the concept of first hitting time (FHT). A statistical inference method is adopted to estimate unknown parameters. Finally, a comprehensive simulation study and a practical application are given to demonstrate the rationality and effectiveness of the proposed model.
W przypadku wysoce niezawodnych produktów o długim cyklu życia, przyspieszone badanie degradacji (ADT) często stanowi skuteczny i atrakcyjny sposób oceny niezawodności. Jak wiadomo, analiza danych z przyspieszonej degradacji wymaga włączenia do modelu ADT trzech źródeł zmienności, w tym zmienności czasowej, zmienności między jednostkami i błędów pomiarowych. Zmienność czasową można odpowiednio opisać za pomocą procesu Wienera. Jednak losowość początkowego poziomu degradacji, który stanowi ważną część zmienności między jednostkami, jest często w badaniach pomijana. Ponadto, w odniesieniu do błędów pomiaru, obecne modele ADT często zakładają, że mają one wzajemnie niezależne rozkłady normalne, ignorując możliwą autokorelację. Problemy te prowadzą w niektórych sytuacjach do niskiej trafności oceny niezawodności. W związku z powyższym, zaproponowano model ADT oparty na procesie Wienera z efektem losowym, w którym uwzględniono błędy autoregresyjne pierwszego rzędu (AR (1)). Następnie, w oparciu o pojęcie pierwszego czasu przejścia, wyprowadzono wyrażenia w postaci zamkniętej dla rozkładu czasu uszkodzenia (FTD). Do oszacowania nieznanych parametrów przyjęto metodę wnioskowania statystycznego. Na koniec przedstawiono kompleksowe studium symulacyjne i wskazano praktyczne zastosowanie modelu w celu wykazania jego racjonalności i skuteczności.
Źródło:
Eksploatacja i Niezawodność; 2019, 21, 2; 246-255
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speech Enhancement Based on Discrete Wavelet Packet Transform and Itakura-Saito Nonnegative Matrix Factorisation
Autorzy:
Liu, Houguang
Wang, Wenbo
Xue, Lin
Yang, Jianhua
Wang, Zhihua
Hua, Chunli
Powiązania:
https://bibliotekanauki.pl/articles/1448505.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
speech enhancement
discrete wavelet packet transform
nonnegative matrix factorisation
Itakura-Saito divergence
Opis:
Nonnegative matrix factorization (NMF) is one of the most popular machine learning tools for speech enhancement (SE). However, there are two problems reducing the performance of the traditional NMF-based SE algorithms. One is related to the overlap-and-add operation used in the short time Fourier transform (STFT) based signal reconstruction, and the other is the Euclidean distance used commonly as an objective function; these methods can cause distortion in the SE process. In order to get over these shortcomings, we propose a novel SE joint framework which combines the discrete wavelet packet transform (DWPT) and the Itakura-Saito nonnegative matrix factorisation (ISNMF). In this approach, the speech signal was first split into a series of subband signals using the DWPT. Then, the ISNMF was used to enhance the speech for each subband signal. Finally, the inverse DWPT (IDWT) was utilised to reconstruct these enhanced speech subband signals. The experimental results show that the proposed joint framework effectively enhances the performance of speech enhancement and performs better in the unseen noise case compared to the traditional NMF methods.
Źródło:
Archives of Acoustics; 2020, 45, 4; 565-572
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies