- Tytuł:
- Study of selected properties of PLA used in 3D printing
- Autorzy:
-
Sośniak, K.
Biela, D.
Szalaty, D.
Ścieszka, M.
Polok-Rubiniec, M.
Włodarczyk-Fligier, A.
Kania, A. - Powiązania:
- https://bibliotekanauki.pl/articles/24200651.pdf
- Data publikacji:
- 2023
- Wydawca:
- Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
- Tematy:
-
materials
biomaterials
PLA
3D printing
FEM
materiały
biomateriały
druk 3D
MES
metoda elementów skończonych - Opis:
- Purpose This study focuses on determining the best possible structure of the orthosis made with FDM 3D printing technology. To produce the samples, a thermoplastic PLA material was selected that met the conditions of biodegradability, biocompatibility and non-toxicity. The samples produced were subjected to a tensile strength test and corrosion resistance. Design/methodology/approach Studies based on FEM analysis were carried out using the advanced engineering software CAE - Inventor. The samples were designed in the CAD system, while the G-Code path was generated using the PrusaSlicer 2.5.0 program dedicated to the Prusa i3 MK3S+ printer, which was used to create the models. Surface morphology observations of PLA were carried out with a Zeiss SUPRA 35 scanning electron microscope (SEM). The static tensile test was performed on the Zwick/Roell z100 device based on the PN-EN ISO 527:1 standard. Electrochemical corrosion tests were carried out using the Autolab PGSTAT302N Multi BA potentiostat in Ringer solution at a temperature of 37ºC. Findings The research allowed the appropriate structure of the orthosis made of PLA polymer material using 3D FDM printing technology. The static tensile test, SEM and corrosion tests confirmed the correct application of this material for the selected purpose. It was possible to determine that samples with holes of 10 mm had the highest strength properties. Due to the tensile tests, the average tensile strength of those samples was around 61 MPa. The corrosion parameters of PLA were determined using Tafel analysis. Research limitations/implications The research methodology proposed in work can be used to study other biomedical materials. The results presented can be the basis for further tests in order to search for the best orthopaedic stabiliser. Originality/value The innovative part of the article are three different versions of structures intended for making orthoses used in medicine.
- Źródło:
-
Journal of Achievements in Materials and Manufacturing Engineering; 2023, 116, 2; 72--79
1734-8412 - Pojawia się w:
- Journal of Achievements in Materials and Manufacturing Engineering
- Dostawca treści:
- Biblioteka Nauki