Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Voutsadakis, George" wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
Secrecy Logic: Protoalgebraic $\mathcal S$-Secrecy Logics
Autorzy:
Voutsadakis, George
Powiązania:
https://bibliotekanauki.pl/articles/1368588.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
Opis:
In recent work the notion of a secrecy logic $\mathcal S$ over a given deductive system $mathcal S$ was introduced. Secrecy logics capture the essential features of structures that are used in performing secrecy-preserving reasoning in practical applications. More precisely, they model knowledge bases that consist of information, part of which is considered known to the user and part of which is to remain secret from the user. $\mathcal S$-secrecy structures serve as the models of secrecy logics. Several of the universal algebraic and model theoretic properties of the class of $\mathcal S$-secrecy structures of a given $\mathcal S$-secrecy logic have already been studied. In this paper, our goal is to show how techniques from the theory of abstract algebraic logic may be used to analyze the structure of a secrecy logic and draw conclusions about its algebraic character. In particular, the notion of a protoalgebraic $\mathcal S$-secrecy logic is introduced and several characterizing properties are provided. The relationship between protoalgebraic $\mathcal S$-secrecy logics and the protoalgebraicity of their underlying deductive systems is also investigated.
Źródło:
Reports on Mathematical Logic; 2012, 47; 3-28
0137-2904
2084-2589
Pojawia się w:
Reports on Mathematical Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Categorical Abstract Algebraic Logic: Coordinatization is Algebraization
Autorzy:
Voutsadakis, George
Powiązania:
https://bibliotekanauki.pl/articles/1368600.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
Opis:
The methods of categorical abstract algebraic logic are employed to show that the classical process of the coordinatization of abstract (affine plane) geometry can be viewed under the light of the algebraization of logical systems. This link offers, on the one hand, a new perspective to the coordinatization of geometry and, on the other, enriches abstract algebraic logic by bringing under its wings a very well-known geometric process, not known hitherto to be related or amenable to its methods and techniques. The algebraization takes the form of a deductive equivalence between two institutions, one corresponding to affine plane geometry and the other to Hall ternary rings.
Źródło:
Reports on Mathematical Logic; 2012, 47; 125-145
0137-2904
2084-2589
Pojawia się w:
Reports on Mathematical Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Categorical Abstract Logic: Hidden Multi-Sorted Logics as Multi-Term π-Institutions
Autorzy:
Voutsadakis, George
Powiązania:
https://bibliotekanauki.pl/articles/749924.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Behavioral Equivalence
Hidden Logic
Multi-Sorted Logic
Multi-term π-Institutions
Interpretability
Deductive Equivalence
Opis:
Babenyshev and Martins proved that two hidden multi-sorted deductive systems are deductively equivalent if and only if there exists an isomorphism between their corresponding lattices of theories that commutes with substitutions. We show that the π-institutions corresponding to the hidden multi-sorted deductive systems studied by Babenyshev and Martins satisfy the multi-term condition of Gil-F´erez. This provides a proof of the result of Babenyshev and Martins by appealing to the general result of Gil-F´erez pertaining to arbitrary multi-term π-institutions. The approach places hidden multi-sorted deductive systems in a more general framework and bypasses the laborious reuse of well-known proof techniques from traditional abstract algebraic logic by using “off the shelf” tools.
Źródło:
Bulletin of the Section of Logic; 2016, 45, 2
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Categorical Abstract Algebraic Logic: Referential π-Institutions
Autorzy:
Voutsadakis, George
Powiązania:
https://bibliotekanauki.pl/articles/749990.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Referential Logics
Selfextensional Logics
Leibniz operator
Tarski operator
Suszko operator
π-institutions
Opis:
Wójcicki introduced in the late 1970s the concept of a referential semantics for propositional logics. Referential semantics incorporate features of the Kripke possible world semantics for modal logics into the realm of algebraic and matrix semantics of arbitrary sentential logics. A well-known theorem of Wójcicki asserts that a logic has a referential semantics if and only if it is selfextensional. Referential semantics was subsequently studied in detail by Malinowski and the concept of selfextensionality has played, more recently, an important role in the field of abstract algebraic logic in connection with the operator approach to algebraizability. We introduce and review some of the basic definitions and results pertaining to the referential semantics of π-institutions, abstracting corresponding results from the realm of propositional logics.
Źródło:
Bulletin of the Section of Logic; 2015, 44, 1-2
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Categorical Abstract Algebraic Logic: Pseudo-Referential Matrix System Semantics
Autorzy:
Voutsadakis, George
Powiązania:
https://bibliotekanauki.pl/articles/750034.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Referential Logics
Selfextensional Logics
Referential Semantics
Referential π-institutions
Selfextensional π-institutions
Pseudo- Referential Semantics
Discrete Referential Semantics
Opis:
This work adapts techniques and results first developed by Malinowski and by Marek in the context of referential semantics of sentential logics to the context of logics formalized as π-institutions. More precisely, the notion of a pseudoreferential matrix system is introduced and it is shown how this construct generalizes that of a referential matrix system. It is then shown that every π–institution has a pseudo-referential matrix system semantics. This contrasts with referential matrix system semantics which is only available for self-extensional π-institutions by a previous result of the author obtained as an extension of a classical result of Wójcicki. Finally, it is shown that it is possible to replace an arbitrary pseudoreferential matrix system semantics by a discrete pseudo-referential matrix system semantics.
Źródło:
Bulletin of the Section of Logic; 2018, 47, 2
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies