Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ullas Chandran, S." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
The vertex detour hull number of a graph
Autorzy:
Santhakumaran, A.
Ullas Chandran, S.
Powiązania:
https://bibliotekanauki.pl/articles/743332.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
detour
detour number
detour hull number
x-detour number
x-detour hull number
Opis:
For vertices x and y in a connected graph G, the detour distance D(x,y) is the length of a longest x - y path in G. An x - y path of length D(x,y) is an x - y detour. The closed detour interval I_D[x,y] consists of x,y, and all vertices lying on some x -y detour of G; while for S ⊆ V(G), $I_D[S] = ⋃_{x,y ∈ S} I_D[x,y]$. A set S of vertices is a detour convex set if $I_D[S] = S$. The detour convex hull $[S]_D$ is the smallest detour convex set containing S. The detour hull number dh(G) is the minimum cardinality among subsets S of V(G) with $[S]_D = V(G)$. Let x be any vertex in a connected graph G. For a vertex y in G, denoted by $I_D[y]^x$, the set of all vertices distinct from x that lie on some x - y detour of G; while for S ⊆ V(G), $I_D[S]^x = ⋃_{y ∈ S} I_D[y]^x$. For x ∉ S, S is an x-detour convex set if $I_D[S]^x = S$. The x-detour convex hull of S, $[S]^x_D$ is the smallest x-detour convex set containing S. A set S is an x-detour hull set if $[S]^x_D = V(G) -{x}$ and the minimum cardinality of x-detour hull sets is the x-detour hull number dhₓ(G) of G. For x ∉ S, S is an x-detour set of G if $I_D[S]^x = V(G) - {x}$ and the minimum cardinality of x-detour sets is the x-detour number dₓ(G) of G. Certain general properties of the x-detour hull number of a graph are studied. It is shown that for each pair of positive integers a,b with 2 ≤ a ≤ b+1, there exist a connected graph G and a vertex x such that dh(G) = a and dhₓ(G) = b. It is proved that every two integers a and b with 1 ≤ a ≤ b, are realizable as the x-detour hull number and the x-detour number respectively. Also, it is shown that for integers a,b and n with 1 ≤ a ≤ n -b and b ≥ 3, there exist a connected graph G of order n and a vertex x such that dhₓ(G) = a and the detour eccentricity of x, $e_D(x) = b$. We determine bounds for dhₓ(G) and characterize graphs G which realize these bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 2; 321-330
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The hull number of strong product graphs
Autorzy:
Santhakumaran, A.
Ullas Chandran, S.
Powiązania:
https://bibliotekanauki.pl/articles/743965.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
strong product
geodetic number
hull number
extreme hull graph
Opis:
For a connected graph G with at least two vertices and S a subset of vertices, the convex hull $[S]_G$ is the smallest convex set containing S. The hull number h(G) is the minimum cardinality among the subsets S of V(G) with $[S]_G = V(G)$. Upper bound for the hull number of strong product G ⊠ H of two graphs G and H is obtainted. Improved upper bounds are obtained for some class of strong product graphs. Exact values for the hull number of some special classes of strong product graphs are obtained. Graphs G and H for which h(G⊠ H) = h(G)h(H) are characterized.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 3; 493-507
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The geodetic number of strong product graphs
Autorzy:
Santhakumaran, A.
Ullas Chandran, S.
Powiązania:
https://bibliotekanauki.pl/articles/744104.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
geodetic number
extreme vertex
extreme geodesic graph
open geodetic number
double domination number
Opis:
For two vertices u and v of a connected graph G, the set $I_G[u,v]$ consists of all those vertices lying on u-v geodesics in G. Given a set S of vertices of G, the union of all sets $I_G[u,v]$ for u,v ∈ S is denoted by $I_G[S]$. A set S ⊆ V(G) is a geodetic set if $I_G[S] = V(G)$ and the minimum cardinality of a geodetic set is its geodetic number g(G) of G. Bounds for the geodetic number of strong product graphs are obtainted and for several classes improved bounds and exact values are obtained.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 4; 687-700
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The edge geodetic number and Cartesian product of graphs
Autorzy:
Santhakumaran, A.
Ullas Chandran, S.
Powiązania:
https://bibliotekanauki.pl/articles/744517.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
geodetic number
edge geodetic number
linear edge geodetic set
perfect edge geodetic set
(edge, vertex)-geodetic set
superior edge geodetic set
Opis:
For a nontrivial connected graph G = (V(G),E(G)), a set S⊆ V(G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g₁(G) of G is the minimum order of its edge geodetic sets. Bounds for the edge geodetic number of Cartesian product graphs are proved and improved upper bounds are determined for a special class of graphs. Exact values of the edge geodetic number of Cartesian product are obtained for several classes of graphs. Also we obtain a necessary condition of G for which g₁(G ☐ K₂) = g₁(G).
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 1; 55-73
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies