Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Trembecka-Wójciga, K." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
In vitro hemocompatibility of thin films materials for direct blood contact
Autorzy:
Trembecka-Wójciga, K.
Major, R.
Lackner, J. M.
Plutecka, H.
Powiązania:
https://bibliotekanauki.pl/articles/285250.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
hemocompatibility
thin film
protein adsorption
shear stresses
Opis:
When designing new biomaterials for tissue contact devices it is important to consider their architecture as it affects different cell response. Surface modification of tubular structures requires the use of different techniques than in the case of flat samples. Similarly, analytical techniques also need to be adapted to the specific shape of substrate. For blood contacting devices this issue is critical because of shear forces generated by fluid flow and responsible for blood components activation. This necessitates the use of diagnostic techniques dedicated for material analysis in dynamic conditions in order to simulate physiological conditions. In the frame of the work, the flat samples as well as tube like elements were considered. The flat samples were prepared for basic research. Based on the results of the basic research the thin coatings were selected for the internal side of the tube like elements which have been analysed in contact with blood using blood flow simulator. The cross section of the coating-substrate interaction was tested using transmission electron microscopy. The attachment of cells to coatings was determined by radial flow chamber. Hemocompatible analysis was carried out in two ways. The quality of the blood after the dynamic test was analysed using flow cytometry. In this case the aggregates formation, platelet consumption and apoptosis derived microparticles were considered. The amount of cells adhered to the materials surfaces was determined by confocal laser microscopy.
Źródło:
Engineering of Biomaterials; 2015, 18, 132; 2-8
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Development of surface modification methods for ReligaHeart® cardiac support system
Autorzy:
Major, R.
Kustosz, R.
Trembecka-Wójciga, K.
Lackner, J. M.
Major, B.
Powiązania:
https://bibliotekanauki.pl/articles/352605.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ReligaHeart® cardiac support system
pneumatic heart
blood-polymer barrier
proangiogenic effect
Opis:
The work is a review of the methods of the surface modification performed by the authors dedicated for for cardiac support system. It presents the evolution of designing the surface dedicated to direct contact with blood. Initially thin and ultrathin coatings were developed. They were designed as a blood-polymer barrier. The pneumatic heart assist devices are made of a medical grade polyurethane. A major milestone was to create advanced ceramic thin films expressing the flexible effects deposited by physical techniques. Coatings have evolved. Another milestone was the surface reproducing the microenvironment to capture progenitor cells from the bloodstream. Thin coatings were prepared, using methods of ion been, controlled residual stresses were introduced. Wrinkles appeared without cracking. This enabled taking control over the process of cell differentiation. Alternatively, the tissue inspired structure resulted of the coating in the form of extracellular matrix. The outer surface was modified with synthetic materials. This enabled the effective proteins docking to induce cell growth, recreating the luminal side of the blood vessel. Coagulation processes have been slowed down. In addition, it was found pro-angiogenic effect.
Źródło:
Archives of Metallurgy and Materials; 2016, 61, 3; 1399-1404
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biomechanical properties of the thin PVD coatings defined by red blood cells
Autorzy:
Trembecka-Wojciga, K.
Major, R.
Lackner, J. M.
Bruckert, F.
Jasek, E.
Major, B.
Powiązania:
https://bibliotekanauki.pl/articles/201364.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
biomechanical properties
thin PVD coatings
red blood cells
właściwości biomechaniczne
cienkie powłoki PVD
krwinki czerwone
Opis:
The measurement of the strength of bonds between biomaterials and cells is a major challenge in biotribology since it allows for the identification of different species in adhesion phenomena. Biomaterials, such as diamond-like carbon (DLC), titanium, and titanium nitride, seem to be good candidates for future blood-contact applications. These materials were deposited as thin films by the hybrid pulsed laser deposition (PLD) technique to examine the influence of such surfaces on cell behavior. The biomaterial examinations were performed in static conditions with red blood cells and then subjected to a dynamical test to observe the cell detachment kinetics. The tests revealed differences in behavior with respect to the applied coating material. The strongest cell-biomaterial interaction was observed for the carbon-based materials compared to the titanium and titanium nitride. Among many tests, a radial flow interaction analysis gives the opportunity to analyze cell adhesion to the applied material with the high accuracy. Analysis of concentrates helped to select materials for further dynamic tests on blood using an aortic flow simulator. In this case, the platelet adhesion to the surface and their degree of activation was analyzed. The quality of the selected coating was tested using a scratch test. The analyses of the microstructure were done using high resolution transmission electron microscopy. The phase composition and the residual stress were analyzed using X-ray diffraction methods.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2015, 63, 3; 697-705
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies