Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Tkaczewska, E." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Wpływ struktury syntetycznego szkła popiołowego na właściwości zaczynów i zapraw cementowych
Influence of fly ashes with different glassy phase structure on properties of cement pastes and mortars
Autorzy:
Tkaczewska, E.
Powiązania:
https://bibliotekanauki.pl/articles/391181.pdf
Data publikacji:
2013
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
szkło
cement
ciepło hydratacji
wytrzymałość
mikrostruktura
glass
hydration heat
compressive strength
microstructure
Opis:
Praca analizuje zależność między aktywnością pucolanową popiołów lotnych a strukturą ich składnika szklistego. Materiał doświadczalny stanowią modelowe popioły lotne krzemionkowe otrzymane ze zmieszania syntetycznego szkła, syntetycznego mullitu i SiO2 jako źródła β-kwarcu. Syntetyzowano dwa szkła o zmiennym składzie chemiczny dobranym w oparciu o wartość parametru ASI, definiowanego jako stosunek Al2O3/(Na2O+K2O+2CaO). Szkła tworzyła głównie sieć tetraedrów SiO4. W szkle o wartości parametru ASI<1, jony glinu występują wyłącznie w tetraedrach AlO4, a w szkle o wartości parametru ASI>1, jony Al lokują się także w oktaedrach AlO6. Stwierdzono, że szkło, w którego strukturze jony glinu występują w koordynacji 4 i 6, ma większą reaktywność,a tj. zawiera więcej aktywnego Al2O3, osiąga wyższe wskaźniki pucolanowości oraz wpływa pozytywnie na wytrzymałość zaprawy wapiennej. Cement z dodatkiem popiołu zawierającego szkło o wyższej wartości parametru ASI wykazuje wyższe ciepło hydratacji oraz większą wytrzymałość na ściskanie. Dodatek 20%mas. popiołów daje cement CEM II/A-V, klasy 32,5R (jony Al w koordynacji 4) lub 42,5N (jony Al w koordynacji 4 i 6).
Work analyzes relationship between fly ash pozzolanic activity and structure of its glass component. Model silica fly ashes are prepared by mixing synthetic glass, synthetic mullite and SiO2. Chemical composition of glasses was based on value of parameter ASI, defined as ratio of Al2O3/(Na2O+K2O+2CaO). Glass structure was built main by tetrahedra SiO4. In glass of parameter ASI<1, Al ions occur only in tetrahera AlO4, but in glass of parameter ASI>1, additionally in octahedra AlO6. It was found that glass containing in its structure Al ion in coordination 4 and 6 shows greater reactivity – more active Al2O3, higher pozzolanic indexes and positive effect on lime mortar strength. Cement with addition of ash containing glass of higher value of ASI has higher hydration heat and higher compressive strength. Using 20wt% of ashes it is possible to obtain cement CEM II/A-V, class 32.5R (Al ion in AlO4) or class 42.5N (Al ion in AlO4 and AlO6)
Źródło:
Budownictwo i Architektura; 2013, 12, 4; 29-40
1899-0665
Pojawia się w:
Budownictwo i Architektura
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preliminary determination of the suitability of slags resulting from coal gasification as a pozzolanic raw material
Wstępne określenie przydatności żużli ze zgazowania węgla jako surowca pucolanowego
Autorzy:
Mazurkiewicz, M.
Tkaczewska, E.
Pomykała, R.
Uliasz-Bocheńczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/216887.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
żużle ze zgazowania
skład chemiczny
skład granulometryczny
aktywność pucolanowa
wytrzymałość na ściskanie
slags
underground coal gasification
fuel (coal) gasification plant
chemical composition
granulometric composition
pozzolanic activity
Opis:
Requirements for environmental protection, such as reducing emissions of CO2, NOx, and SO2 are the reason for growing interest in new technologies for coal utilization. One of the most promoted technologies is coal gasification. However, like any technology using coal, this process produces wastes - fly ash and slag. Due to the small number of coal gasification plants, these wastes are poorly understood. Therefore, before making decisions on the introduction of coal gasification technology, a waste utilization plan should be developed. This also applies to the slags formed in underground coal gasification technology. One of the options under consideration is to use these wastes as a component in mineral binders of a pozzolanic character. This paper compares the properties of two types of slags. The first slag (MI) comes from fuel gasification, and the second slag (BA) is from underground coal gasification. Slag MI can be classified as basic slag with a chemical composition similar to that of silica fly ash from coal combustion. Slag BA - because of its four times greater content of calcium oxide - belongs to a group of weakly basic slags. The main and only mineral component of slag MI is glassy phase. Slag BA forms - besides the glassy phase - crystalline phases such as mullite (3 Al2O3 2 SiO2), quartz (\beta-SiO2), anorthite (Ca(Al2Si2O8)), gehlenit (Ca2Al[(Si,Al)2O7[), wollastonite (Ca3[Si3O9]), 2CaO SiO2, and 4 CaO Al2O3 Fe2O3. The results of analyses have shown that slag BA has better pozzolanic properties (the pozzolanic activity index is 75.1% at 90 days) than slag MI (69.9% at 90 days). The preliminary studies lead to the conclusion that these slags are characterized by very low pozzolanic activity and cannot be used as a pozzolanic material.
Wymagania dotyczące ochrony środowiska, takie jak: ograniczenie emisji CO2, NOx i SO2 spowodowały coraz większe zainteresowanie nowymi technologiami energetycznego wykorzystania węgla. Jedną z testowanych i promowanych obecnie technologii jest zgazowanie węgla. Jednak, jak każda technologia produkcji energii wykorzystująca węgiel, powoduje ona powstawanie odpadów: popiołów lotnych i żużli. Ze względu na niewielką ilość instalacji zgazowania węgla funkcjonujących obecnie w świecie, odpady te są w niewielkim stopniu poznane, dlatego też przed podjęciem decyzji o wprowadzaniu technologii zgazowania węgla, powinno się opracować technologię utylizacji powstających w niej odpadów. Najlepszym rozwiązaniem będzie oczywiście opracowanie kierunku ich gospodarczego wykorzystania. Jedną z możliwości rozpatrywanych dla gospodarczego wykorzystania żużli ze zgazowania jest zastosowanie ich jako składnika spoiw mineralnych o charakterze pucolanowym. W artykule przedstawiono wyniki badań aktywności pucolanowej dwóch żużli: żużla ze zgazowania węgla z instalacji energetycznego zgazowania oraz podziemnego zgazowania. Ze względu na skład chemiczny żużel MI można zaklasyfikować jako żużel zasadowy o składzie chemicznym zbliżonym do krzemionkowego popiołu lotnego ze spalania węgla kamiennego. Z kolei żużel BA, z powodu czteroktrotnie wyższej zawartości tlenku wapnia, należy do grupy żużli słabozasadowych. Podstawowym i jedynym składnikiem mineralnym żużla MI jest faza szklista. W żużlu BA, obok fazy szklistej, tworzą się również fazy krystaliczne, a mianowicie: mullit 3 Al2O3 2 SiO2, kwarc \beta-SiO2, anortyt Ca(Al2Si2O8), gehlenit Ca2Al[(Si,Al)2O7], wollastonit Ca3[Si3O9], 2CaO SiO2 i 4 CaO Al2O3 Fe2O3. W wyniku badań stwierdzono, że żużel BA wykazuje większe wartości wskaźnika aktywności pucolanowej (75,1% po 90 dniach) od żużla MI (69,9% po 90 dniach). Niestety, wstępne badania pozwalają stwierdzić, że żużle te charakteryzują się zbyt niską aktywnością pucolanową i nie mogą być traktowane jako materiał pucolanowy w technologii produkcji cementu i betonu.
Źródło:
Gospodarka Surowcami Mineralnymi; 2012, 28, 4; 5-14
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies