- Tytuł:
- Trees Whose Even-Degree Vertices Induce a Path are Antimagic
- Autorzy:
-
Lozano, Antoni
Mora, Mercè
Seara, Carlos
Tey, Joaquín - Powiązania:
- https://bibliotekanauki.pl/articles/32304141.pdf
- Data publikacji:
- 2022-08-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
antimagic labeling
tree - Opis:
- An antimagic labeling of a connected graph G is a bijection from the set of edges E(G) to {1, 2, . . ., |E(G)|} such that all vertex sums are pairwise distinct, where the vertex sum at vertex v is the sum of the labels assigned to edges incident to v. A graph is called antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel conjectured that every simple connected graph other than K2 is antimagic; however the conjecture remains open, even for trees. In this note we prove that trees whose vertices of even degree induce a path are antimagic, extending a result given by Liang, Wong, and Zhu [Anti-magic labeling of trees, Discrete Math. 331 (2014) 9–14].
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2022, 42, 3; 959-966
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki