Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sun, Yuqing" wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
Multi-feature spatial distribution alignment enhanced domain adaptive method for tool condition monitoring
Autorzy:
Hei, Zhendong
Sun, Bintao
Wang, Gaonghai
Lou, Yongjian
Yuqing, Zhou
Powiązania:
https://bibliotekanauki.pl/articles/28328268.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
condition monitoring
Transfer learning
correlation alignment
joint maximum mean difference
feature extractor
Opis:
Transfer learning (TL) has been successfully implemented in tool condition monitoring (TCM) to address the lack of labeled data in real industrial scenarios. In current TL models, the domain offset in the joint distribution of input feature and output label still exists after the feature distribution of the two domains is aligned, resulting in performance degradation. A multiple feature spatial distribution alignment (MSDA) method is proposed, Including Correlation alignment for deep domain adaptation (DeepCORAL) and Joint maximum mean difference (JMMD). Deep CORAL is employed to learn nonlinear transformations, align source and target domains at the feature level through the second-order statistical correlations. JMMD is applied to improve domain alignmentby aligning the joint distribution of input features and output labels. ResNet18 combining with bidirectional short-term memory network and attention mechanism is developed to extract the invariant features. TCM experiments with four transfer tasks were conducted and demonstrated the effectiveness of the proposed method.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 4; art. no. 171750
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic analysis and experiment of underactuated double-pendulum anti-swing device for ship-mounted jib cranes
Autorzy:
Wang, Jianli
Liu, Kexin
Wang, Shenghai
Chen, Haiquan
Sun, Yuqing
Niu, Anqi
Li, Haolin
Powiązania:
https://bibliotekanauki.pl/articles/32895577.pdf
Data publikacji:
2022
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
ship-mounted cranes
underactuated double-pendulum
dynamic simulation
anti-swing control
Opis:
This paper proposes a three degrees of freedom parallel anti-swing method by the main and auxiliary cables to address the problems related to underactuated double-pendulum anti-swing for a ship-mounted jib crane. By analysing the dynamic coupling relationship between the swing of the hook and the payload, it seeks to establish an accurate dynamic model of the anti-swing device under the ship’s rolling and pitching conditions, and discusses the influence of ship excitation, the crane state, load posture and anti-swing parameters on the in-plane and out-of-plane swing angles. The analysis shows that the primary pendulum reduces the in-plane angle by 90% and the out-of-plane angle by 80%, the in-plane angle of the secondary pendulum is reduced by 90%, and the out-of-plane angle is reduced by 80%. The reliability of the simulation data is verified through experiments.
Źródło:
Polish Maritime Research; 2022, 4; 145-154
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tool wear condition monitoring in milling process based on data fusion enhanced long short-term memory network under different cutting conditions
Autorzy:
Zheng, Guoxiao
Sun, Weifang
Zhang, Hao
Zhou, Yuqing
Gao, Chen
Powiązania:
https://bibliotekanauki.pl/articles/2038054.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
tool wear condition monitoring
empirical mode decomposition
variational mode decomposition
fourier synchro squeezed transform
neighborhood component analysis
long short-term memory network
Opis:
Tool wear condition monitoring (TCM) is essential for milling process to ensure the machining quality, and the long short-term memory network (LSTM) is a good choice for predicting tool wear value. However, the robustness of LSTM- based method is poor when cutting condition changes. A novel method based on data fusion enhanced LSTM is proposed to estimate tool wear value under different cutting conditions. Firstly, vibration time series signal collected from milling process are transformed to feature space through empirical mode decomposition, variational mode decomposition and fourier synchro squeezed transform. And then few feature series are selected by neighborhood component analysis to reduce dimension of the signal features. Finally, these selected feature series are input to train the bidirectional LSTM network and estimate tool wear value. Applications of the proposed method to milling TCM experiments demonstrate it outperforms significantly SVR- based and RNN- based methods under different cutting conditions.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 4; 612-618
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Time-frequency Representation -enhanced Transfer Learning for Tool Condition Monitoring during milling of Inconel 718
Autorzy:
Zhou, Yuqing
Sun, Wei
Ye, Canyang
Peng, Bihui
Fang, Xu
Lin, Canyu
Wang, Gonghai
Kumar, Anil
Sun, Weifang
Powiązania:
https://bibliotekanauki.pl/articles/24200823.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
tool condition monitoring
time-frequency analysis
Markov Transition Field
transfer learning
Opis:
Accurate tool condition monitoring (TCM) is important for the development and upgrading of the manufacturing industry. Recently, machine-learning (ML) models have been widely used in the field of TCM with many favorable results. Nevertheless, in the actual industrial scenario, only a few samples are available for model training due to the cost of experiments, which significantly affects the performance of ML models. A time-series dimension expansion and transfer learning (TL) method is developed to boost the performance of TCM for small samples. First, a time-frequency Markov transition field (TFMTF) is proposed to encode the cutting force signal in the cutting process to two-dimensional images. Then, a modified TL network is established to learn and classify tool conditions under small samples. The performance of the proposed TFMTF-TL method is demonstrated by the benchmark PHM 2010 TCM dataset. The results show the proposed method effectively obtains superior classification accuracies for small samples and outperforms other four benchmark methods.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 2; art. no. 165926
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A tool wear condition monitoring approach for end milling based on numerical simulation
Autorzy:
Zhu, Qinsong
Sun, Weifang
Zhou, Yuqing
Gao, Chen
Powiązania:
https://bibliotekanauki.pl/articles/1841690.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
tool wear
sample missing
sample insufficiency
numerical simulation
cutting force
Opis:
As an important research area of modern manufacturing, tool condition monitoring (TCM) has attracted much attention, especially artificial intelligence (AI)- based TCM method. However, the training samples obtained in practical experiments have the problem of sample missing and sample insufficiency. A numerical simulation- based TCM method is proposed to solve the above problem. First, a numerical model based on Johnson-Cook model is established, and the model parameters are optimized through orthogonal experiment technology, in which the KL divergence and cosine similarity are used as the evaluation indexes. Second, samples under various tool wear categories are obtained by the optimized numerical model above to provide missing samples not present in the practical experiments and expand sample size. The effectiveness of the proposed method is verified by its application in end milling TCM experiments. The results indicate the classification accuracies of four classifiers (SVM, RF, DT, and GRNN) can be improved significantly by the proposed TCM method.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 2; 371-380
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies