Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Styszyńska, A." wg kryterium: Autor


Tytuł:
Wpływ zmian temperatury wody na Prądzie Norweskim na kształtowanie rocznej temperatury powietrza w atlantyckiej Arktyce i notowane tam ocieplenie w okresie ostatniego 20-lecia
The influence of changes in water temperature in the Norwegian Current on annual air temperature in the Atlantic part of the Arctic and its warming noted over the past 20-year period
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260694.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatury powietrza
temperatury wody
Arktyka
water temperature
air temperature
Arctic
Opis:
Kruszewski, Marsz and Zblewski (2003) found out that winter temperature of water in the Norwegian Current indicates quite strong, occurring with a delay, correlations with the air temperature at Spitsbergen, Bjornoya, Hopen and Jan Mayen. Strong and statistically significant correlations between the mean sea surface temperature (SST) in the period January-March in grid 2°x2° [67°N, 10°E] and the monthly temperature of July, August and September with SST are marked the same year (3-5 month delay) and with the air temperature in November and December the following year (18-20 month delay). Waters of the Norwegian Current transport warm, of higher salinity Atlantic waters. Winter SST of the Atlantic Ocean characterizes the heat resources in the deeper layers of waters. SST in grid [67,10] in an indirect way characterizes heat resources carried with the Atlantic waters into the Norwegian Sea and farther to the Arctic together with the West Spitsbergen and Nordcap currents. The aim of this work is to describe the influence caused by changes in heat resources transported to the Arctic with the Norwegian Current on the annual temperature of air in the region of Hopen, Spitsbergen and Jan Mayen. The examined period covers the years of 1982?2002 and is marked by great warming in this area. The analysis of spatial distribution of correlation coefficients justifies Kruszewski and others (2003) hypothesis of mechanism causing the delayed influence of changes in water heat resources on the air temperature in this region The observed positive correlations between winter SST in [67,10] grid and air temperature in July, August and September result in the influence of changing water heat resources on atmospheric circulation noted in these months. Positive correlations in November and December in the following year result from the ?onflow? to the Arctic of warmer and of high salinity Atlantic waters. They have influence on the ice formation on the Greenland and Barents seas thus causing that influence of changing heat resources carried with waters on air temperature is much stronger. The analysis of regression made it possible to establish the correlation between annual air temperature at a given station (Ts) and winter water temperature (Tw) in [67,10] grid. Annual temperature in a year k is a function of two variables: Tw of the same year as the temperature Ts (Tw(k)) and Tw from the preceding year (Tw(k-1)): Ts(k) = A + b . Tw(k) + c . Tw(k-1) Table 3 contains the values of constant term and regression coefficients as well as statistical characteristics of formulas for the analysed stations. Both variables Tw from the year k and the year k-1 explain about 40% of the changeability in mean annual air temperature of the observed 20-year period at the analysed stations. This means that only one element, i.e. heat resource in the waters of the Norwegian Current, defined with the value Tw, determines more than 1/3 of the whole annual changeability in air temperature in the region located from Jan Mayen up to Hopen and from Tromso up to Ny Alesund. The station for which maximum explanation may be applied (47.7%) is Hopen, the station where the positive trend in annual temperature is the highest (+0.090°C/year). The values of regression coefficients b and c prove that the inertial factor connected with advection of the Atlantic waters has greater role in the changeability in mean annual temperature of air. The analysis of formula [2] indicates that great increases and decreases in annual temperature at the discussed stations will be observed in a k year if the values of Tw in two following years are significantly higher or lower than the mean ones. That is why the occurrence of positive trend in value of Tw should be followed by relatively systematic increase in annual air temperature at stations located at the described region. A positive trend in annual air temperature was noted at the analysed stations over the period 1982?2002. At Jan Mayen its value is +0.067 (ą0.028)°C/year (p<0.026). When taking the estimated values of regression coefficients in the multiple regression connecting the annual temperature at Jan Mayen with the value of Tw (Table 1) and the same value of trend T equal to +0.023 then the value of annual trend in air temperature at Jan Mayen influenced by trend Tw equals 0.0598°C/year. The obtained result indicates that the whole or almost whole warming observed at Jan Mayen in the years 1983-2002 may be explained by direct and indirect influence of the increase in the value of Tw over that period.
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 69-78
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przebieg wskaźnika oceanizmu w eurazjatyckim sektorze Arktyki i Subarktyki w XX i na początku XXI wieku
Course of oceanity index in Euro-Asian sector of the Arctic and Sub-Arctic in the twentieth and early twenty-first century
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260818.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
oceanizm
kontynentalizm
zmiany klimatu
temperatura powietrza
Arktyka Syberyjska
Subarktyka Eurazjatycka
oceanity
contynentality
climate change
air temperature
Siberian Arctic
Euro-Asian Arctic and Subarctic
Opis:
Praca omawia zmienność wskaźnika oceanizmu (Oc) na lądowym obszarze eurazjatyckiego sektora Arktyki i Subarktyki w latach 1935-2014. Wskaźnik Oc stanowi miarę stopnia oceaniczności i kontynentalizmu klimatu. Analizy wykazały relatywnie niewielkie zróżnicowanie przestrzenne rozkładu Oc. Obszary występowania klimatu oceanicznego lokują się na zachód od wybrzeży Spitsbergenu i Skandynawii, klimat suboceaniczny obejmuje wybrzeża kontynentu i wyspy w rejonie Morza Barentsa i wąskim językiem sięga po Wyspę Wrangla, pozostałe obszary i akweny objęte są domeną klimatu kontynentalnego. Analiza zmian wskaźnika Oc w kolejnych dziesięcioleciach wykazała dużą stabilność domeny klimatu kontynentalnego. Największa zmienność przestrzenna Oc występuje w rejonie Morza Barentsa. Obszar położony na zachód od Gór Czerskiego znajduje się pod wpływem ma powietrza napływających znad północnego Atlantyku. Głównym czynnikiem wymuszającym zmienność wskaźnika Oc są zmiany ciśnienia w Arktyce Atlantyckiej związane z występowaniem makrotypu cyrkulacji środkowotroposferycznej W Wangengeima-Girsa. Zmiany powierzchni lodów morskich w Arktyce wywierają bezpośredni skutek na zmienność oceanizmu tylko w strefie przybrzeżnej.
The work discusses variability of oceanity index (Oc) on land area of Euro-Asian sector of the Arctic and Sub-Arctic in the years 1935-2014. The Oc index is a measure of the degree of climate continentality and oceanity. The analyses showed a relatively small variation of Oc spatial distribution. Areas with oceanic climate are located west of the coast of Spitsbergen and Scandinavia; sub-oceanic climate includes coast of the mainland and the islands in the Barents Sea and a narrow passage that reaches Wrangel Island. Other land and sea areas are mainly covered by the continental climate. Analysis of changes in Oc index in the consecutive decades showed high stability of the continental climate domain. The greatest spatial variability of Oc occurs in the Barents Sea. Area west of Chersky Mountains is influenced by air masses advection from the North Atlantic. The main factor forcing the variability of oceanity index (Oc) there are pressure changes in the Atlantic Arctic, associated with Wangengeim-Girs W macro-type of mid-tropospheric circulation. Changes in the area of sea ice in the Arctic have a direct effect on the oceanity index only in the coastal zone.
Źródło:
Problemy Klimatologii Polarnej; 2014, 24; 51-72
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Związki między temperaturą wody w energoaktywnej strefie Morza Bellingshausena a temperaturą powietrza na Stacji Arctowskiego
Correlations between the water temperature in energy-active zone of the Bellingshausen Sea and the air temperature at the Arctowski Station
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260963.pdf
Data publikacji:
1998
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura wody
temperatura powietrza
Szetlandy Południowe
Stacja Arctowskiego
anomalia TPO
water temperature
air temperature
Arctowski Station
South Shetland
SST anomalies
Opis:
The main task of this paper is to explain if there is an energy-active sea zone in the vicinity of the South Shetland Islands and the Antarctic Peninsula which controls changes in atmospheric circulation in this area. The analysis made by use of the data comprising information about mean monthly sea surface temperatures (later SST) and SST anomalies in 2 x 2° grids - GEDEX and data about mean monthly air temperatures taken at the Arctowski Station (Meteorological Yearbooks of the Arctowski Station). Common data spanned the period from January 1982 to April 1992. The first stage of this work was to find so called .active grids", i.e. grids of bigger influence of ocean surface on thermic regime of distant areas. In order to do that an analysis of changes in SST in parts of the South Ocean comprising the Bellingshausen Sea, the Drake Strait, the Scotia Sea and the boundary between the Scotia Sea and the Weddell Sea was carried out. The analysis resulted in a conclusion that three grids situated 80oW: 56°,60° and 64°S show the larger relation with the flow of air temperature at the Arctowski Station. There are synchronic and asynchronic correlations between SST anomalies and the air temperature in nominated grids of the Arctowski Station. The results of analysis of synchronic correlations have been presented in table l. Asynchronic correlations are of complicated nature and distributions. Most numerous simple correlations were reported to occur between the temperature at the Arctowski Station and SST Anomalies in grids [80°W, 64°S]. The largest correlations are those with anomalies occurring in January, February and March. They can be observed in the air temperature with 11-13 months delay. The combined correlations are multiple correlations between regression equation of synchronically occurring anomalies (AN) in those grids and the air temperature at the Arctowski Station (ARC) in consecutive months (1, 2, 3, ..., n, n + 1, n + 2); ARC_n = a + b AN[80.56]_n + c AN[80.60]_n + d AN[80.64]_n. Table 2 contains set of multiple correlation coefficients and those which are likely to be significant have been marked. It has been stated that SST anomalies at 800W in March correlate with monthly air temperatures at the end of summer the following year (February and March) at the Arctowski Station and with temperatures of the early and midwinter of the following year (May, June, July).The variation in SST anomalies in March explains 88% - 69% of variance of variation in the air temperature in June and in July of the following year at the Arctowski Station (fig. l). The response of the air temperature to the occurrence of SST anomalies in October at 800W is much faster - from one to five months. Large correlation between the air temperatures at the Arctowski Station and SST anomalies can be observed already in December of the same year and in January, March and April in the following year (fig. 2). The above stated facts lead to conclusion that the distribution of SST does not influence the flow of the air temperature in a continuous way. Future variations in the air temperature are influenced by the states of thermal field of water measured at crucial moments (the end of summer and the end of winter). They are the states, which later on are slowly modified by processes of radiation in-and off flow, wind chilling and dynamic processes active in the ocean (heat advection following the mass advection). Thus a thesis can be stated that the SST anomalies occurring in grids 56°, 600 and 64°S. 800W may serve as predictive values to work out long term prognosis of the air temperature at the Arctowski Station. These prognosis can be divided into "early" prognosis with 2-6 months' advance (equations 1-4) and "distant" prognosis with 11-18 months' advance (equations 5-8). The above mentioned equations explain about 91% to 52% of variations in the mean monthly air temperature at the Arctowski Station. The presented facts indicate that there really is energy-active zone in the Bellingshausen Sea. Chapter 6 in 4 points shows how the hypothetical mechanism works. It can be understood and explained in a similar way as in case of the Labrador Sea and the New Foundland region (Marsz 1997). The analysis of synchronic statistical correlations between the air temperature at the Arctowski Station and the distribution of SST anomalies at 80°W indicates, among others, the presence of the mechanism described in Chapter 6. Such correlations have been analysed and discussed in a detailed way for April (fig. 3, equations 9 and l0) and for July (fig. 4, equation 11).
Źródło:
Problemy Klimatologii Polarnej; 1998, 8; 25-46
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stan termiczny wód powierzchniowych Bałtyku a temperatura powietrza w Polsce
Sea surface temperature in Baltic and air temperature in Poland
Autorzy:
Styszynska, A.
Powiązania:
https://bibliotekanauki.pl/articles/2084511.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Warszawski. Wydział Geografii i Studiów Regionalnych
Tematy:
Baltyk
morza
wody powierzchniowe
stan termiczny
temperatura powietrza
Polska
korelacja
Opis:
The influence of sea surface temperature (SST) changeability of the Baltic Sea on the monthly and seasonal air temperature in Poland has been examined here. Spatial variability of these correlations was analyzed in the period 1950-2009, and temporal changes - in the years 1854-2009. A significant influence of changes in SST of the Baltic on air temperature in Poland at the end of winter (February-March) and in the middle of summer (Juty-August) was indicated. The correlations between SST and the air temperature are stable both in space and time. In fact the same correlation coefficients are noted at particular stations both for 155-year and for 60-year periods.
Źródło:
Prace i Studia Geograficzne; 2011, 47; 159-167
0208-4589
Pojawia się w:
Prace i Studia Geograficzne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Oscylacja Północnego Atlantyku a opady na obszarze Polski
Oscilation of the North Atlantic and the precipitation in Poland
Autorzy:
Styszynska, A.
Powiązania:
https://bibliotekanauki.pl/articles/2085126.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Warszawski. Wydział Geografii i Studiów Regionalnych
Źródło:
Prace i Studia Geograficzne; 2001, 29; 233-241
0208-4589
Pojawia się w:
Prace i Studia Geograficzne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu i jego przedpola (SW Spitsbergen) w sezonie zimowym 2007/2008
Ice conditions in Hornsund and its foreshore (SW Spitsbergen) during winter season 2007/2008
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260675.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
lód morski
sezon lodowy
temperatura wody morskiej
Hornsund
Spitsbergen
sea ice
sea surface temperature
Opis:
W sezonie zimowym 2007/2008 przebieg zlodzenia Hornsundu był odmienny od przeciętnego. Od października do lutego średnia miesięczna temperatura powietrza była o 2,6–6,1 deg wyższa, a w marcu o 2,5 deg niższa od średniej klimatycznej (1978-2006). Ujemna temperatura wody powierzchniowej przy brzegu Isbjorn-hamny występowała od 29 X 2007 do 20 V 2008 r. Najniższe (–1,9°C) wartości temperatury wody mierzono od trzeciej dekady listopada 2007 r. do końca kwietnia 2008 r. Latem i jesienią (VIII-X) 2007 r. dochodziło do inten-sywnego obłamywania się lodu lodowcowego, który okresowo tworzył zwarte skupienia growlerów i gruzu lodow-cowego wzdłuż brzegu. W Isbjornhamnie pierwszy okres tworzenia się lodu morskiego miał miejsce między 31 października a 12 grudnia 2007 r. (lepa lodowa, krążki lodowe), drugi – od 26 grudnia 2007 r. do 22 maja 2008 r. Na przedpolu Hornsundu dryfujący lód allochtoniczny pojawił się w pierwszych dniach grudnia 2007 r. Od połowy lutego do trzeciej dekady kwietnia prawie cała powierzchnia Hornsundu pokryta była lodem dryfującym o zmiennej zwartości. Na osiowej partii fiordu lód autochtoniczny zanikł po 28 kwietnia 2008 r. Maksymalna wysokość wału lodu nabrzegowego w Isbjornhamnie osiągnęła 2,5 m.
This article presents the development of sea ice cover in the waters of central and western part of the Hornsund Fjord, as well as in its foreshore during winter season 2007-2008. Due to long lasting (November-February) high air temperatures (Fig. 2-3) the sea ice cover development of Hornsund was different from the average one. Significant decrease in air temperature was observed in March (mean monthly –13.4°C) and April (mean monthly –9.3°C). In such thermal conditions the maximum thickness of sea ice which might have been formed in the outer, sheltered from high seas areas of the fjord, estimated with the help of Zubov formula, could reach 41cm in January, 52cm in February, 71cm in March, up to 82–84cm in the period from April to May 2008 (Tab. 1). In summer and autumn (August-October) 2007 only brash glacier ice and small icebergs broken off the glaciers endings on the sea in Hornsund drifted in the waters of the fjord. At this time brash glacier ice and growlers broken off the Hans Glacier periodically concentrated densely along the coast of Isbjorhamna. The first forms of new ice (slush and grease ice as well as shuga) were observed close to the west coast of Isbjornhamna from 31th October till 12rd December (Fig. 8). The second period of sea ice formation started on 26th December. Not sooner than in the middle of March when severe frost was noted, a permanent ice cover was formed (young ice). Fast ice was only observed in the internal waters of Hornsund, in the Brepollen, Burgerbukta, Samarinvagen, Adria and Isbjornhamna bays. From the first decade of February till the 3th July the ice cover of Hornsund experienced large fluctuations (Fig. 11-12, 14-17). During that period the entire area of Hornsund was covered with sea ice a few times. The first this phenomenon was noted from 7th till 20th February 2008 when the allochtonic ice drifting in the waters of the Sorkapp Current entered western and central part of the fjord and when the central and inner parts were covered with ice formed in situ (Fig. 11-12). The second this phenomenon was noted from the third decade of March till the end of April when the all surface of Hornsund were covered autochthonous ice. On the western and central part of the fjord this was young ice and nilas. In the internal waters of Hornsund was observed first-year ice (Fig. 14-15). This sea ice cover was several times destroyed by very strong east winds causing that most of ice was moved outside the fjord. At the end of April strong E and SE winds caused ice removal from the axial part of Hornsund. Later, apart from three short episodes (5-8 May, 15-22 May and 1-9 July) when strips of allochtonic ice entered west and central part of the fjord (Fig. 16-17), only single floes of broken-off the fast ice from Brepollen, Burgerbukta and Samarinvagen drifted in the waters of Hornsund. The ice season 2007-2008 ended on 9th July when the last floes of very rotten ice were observed drifting from the inside of the fjord with the tidal stream to its foreshore.
Źródło:
Problemy Klimatologii Polarnej; 2009, 19; 247-267
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stan termiczny Atlantyku Północnego a zlodzenie mórz Barentsa i Grenlandzkiego (1972-1994)
The thermal conditions of the North Atlantic and ice cover of the Barents and Greenland seas (1972-1994)
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260840.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
pokrywa lodowa
temperatury powierzchni oceanu
Morze Barentsa
Morze Grenlandzkie
zlodzenie mórz
ice cover
sea surface temperature
Barents Sea
Greenland sea
Opis:
This work deals with correlations between anomalies in SST (sea surface temperature) in the North Atlantic and the sea ice area of the Barents and Greenland seas. This research made use of mean monthly sea ice cover with density >= 10% observed in the Barents and Greenland seas over the period 1972-1994 (calculated on the bases of weekly area of sea ice cover of the above mentioned seas collected in NCDC data set ?1972-1994 Sea Ice Historical Data Set?). The thermal condition of the North Atlantic is characterised by the values of anomalies in mean monthly sea surface temperature (SST) in so called ?controlled grids? (2° x 2°) selected/appointed here by A.A.Marsz (1999a, 2001). Their location is presented in Fig.1. A standard statistical analysis has been used in this research (correlation analysis, regression analysis). The strongest synchronic correlations (observed in the same months) with the sea ice cover of the said seas have been noted in grids located north of the North Atlantic Current and characterising the following waters (Tables 1 and 2): of the Labrador Sea (located within the range of Labrador Current activity) - [50,52], those north of the Gulfstream delta - [40,52] and those located inside the circle of the cyclonic circulation of the North Atlantic - [30,54]. The highest coefficient values of linear correlation, at a level p<0.05 exceeding the statistical significance, were noted in winter months (December, January, February) and those spring ones (April, May, June) as well as in summer - in July and August (the Greenland Sea). There are also several asynchronic correlations. The results of analysis of multiple regression between the SST anomalies and the area of the sea ice cover indicated that the sea areas in which the changeability in their thermal condition has the greatest influence on the formation of the sea ice cover of the said seas are located in the western part of the North Atlantic.
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 39-57
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany zlodzenia mórz Grenlandzkiego i Barentsa w świetle zmian wskaźnika intensywności Prądu Labradorskiego (1972-1994). Wstępne wyniki analizy
Changes in sea ice cover of the Barents and Greenland seas in the light of changes of the Labrador Current intensity index (1973-1994). Preliminary result of analysis
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260876.pdf
Data publikacji:
2001
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
pokrywa lodowa
cyrkulacja atmosfery
Prąd Labradorski
Morze Grenlandzkie
Morze Barentsa
ice cover
atmospheric circulation
Labrador Current
Greenland sea
Barents Sea
Opis:
The Barents and Greenland seas are characterised by great seasonal and interannual changeability in the ice cover. Research carried out by many authors prove that the ice regime of these seas is influenced, to a great extent, by large scalę changes in atmospheric circulation and by the ocean surface circulation of the North Atlantic and the Arctic Ocean. Such correlations arę mainly of teleconnection type and show phase shifts (among others Mysak 1995, Deser et. al. 2000). One of the elements of the sea surface circulation of the Atlantic Ocean is the Labrador Current. The intensity of this current changes in time. In the periods when the Labrador Current becomes strong, its waters form vast anomalies in the sea surface temperaturę in the NW Atlantic. Further they spread eastwards along the north edge of the North Atlantic Current and with some delay, have influence on the atmospheric circulation in the central and east part of the North Atlantic (Marsz 1997, 1999). The way how the changes in the intensity of the Labrador Current influence the climate nas not been discovered yet. The intensity of this current can be defined by means of an index (WPL - Labrador Current Intensity lndex) established by Marsz (Internet). This work examines if there is direct correlatton between the changes in the sea-ice cover of the Barents and Greenland seas and the variability of the intensity index of the Labrador Current. The research madę use of homogenous data concerning a week-old sea ice cover observed at the analysed seas and the values of intensity index of the Labrador Current in the period January 1972 until December 1994 given by Marsz (obtained from NIC and NCDC - Asheville). It has been stated that over the examined 23-year period (1972-1994) the mean monthly the sea-ice cover in the Barents Sea indicates to strong correlation with the changes in the value of the intensity index of the Labrador Current (Table 1, Fig. 1). The changes in WPL result in the rhythm of changes in the sea-ice cover of the Greenland Sea only in winter (Table 2, Fig. 2). The occurrence of anomalies in the sea surface temperatures in the region SE of New Foundland seem to have great influence on the later formation (after few or several months) of the sea-ice cover in the Barents Sea (Fig. 1, 3. 4, formula 1-3). Changes in the intensity of Labrador Current in a given year explain 30% up to 50% changeability of the sea-ice cover developing in that sea from January to July in the following year (Table 1, Fig. 3). The area of the sea-ice cover in the Greenland Sea is mainly influenced by the intensity of the Transpolar Drift and East-Greenland Current transporting considerable amount of ice from the Arctic Ocean. Only during fuli winter season, from January to March, the correlation between the intensity of the Labrador Current and the sea-ice cover reaches statistical significance (Table 2). The results of the carried out analysis point to significant influence of advection factor on the sea-ice cover of the examined seas. In both analysed seas the phenomenon is connected to both the character and intensity of the Atlantic waters flow and to greater frequency of occurrence of specified forms of air circulation in the region of central and eastern part of the North Atlantic, possible at a given distribution of anomalies in surface waters of the North Atlantic.
Źródło:
Problemy Klimatologii Polarnej; 2001, 11; 93-104
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Związki bilansu masy lodowców w rejonie Kongsfjordu (NW Spitsbergen) z pokrywą lodową mórz Grenlandzkiego i Barentsa
Correlation between the mass balance of glaciers in the Kongsfjorden area (NW Spitsbergen) and sea ice cover of the Barents and Greenland seas
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260913.pdf
Data publikacji:
2002
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Morze Grenlandzkie
Morze Barentsa
lodowce
pokrywa lodowa
Barents Sea
glacier
ice cover
Greenland sea
Opis:
The sea ice cover of the Greenland and Barents seas is characterised by great seasonal and interannual changeability which has influence on radiation and heat balance of that region. This changeability is directly observed in changes in atmospheric circulation and further noted in changes in meteorological elements (mainly in air temperature, cloudiness, precipitation and wind). Changes in weather conditions determine both the value of losses of glacier masses in a given balance year and the value of ice masses accumulation. This article tries to find the answer to a question if and to what extent the variability of the extent and rate of the Barents and Greenland seas ice formation is directly reflected in changeability of glaciers masses balance in the region of Spitsbergen. This research was based on the mass balance of two small glaciers located in the region of Kongsfjord, i.e. Austre Brogger and Midre Lovén. The mean monthly values of sea ice cover observed in the Greenland and Barents seas in the period 1972-1994 were used in this research (the values calculated on the basis of 1-week values of these seas ice cover taken from NCDC - Asheville). The values of winter, summer and net balances of the said glaciers were drawn from article by Lefauconnier et al. (1999). In addition, the correlation was examined between the balance Austre Brogger and Midre Lovén glaciers and the changeability of atmospheric circulation described by Niedźwiedź ?circulation types? (2001). The research made use of standard statistical analysis (correlation and regression analysis). Statistically significant correlations have been noted between the values of winter balances of both examined glaciers and the size of ice cover of the Barents and Greenland seas at the initial stage of its formation - in November (r ~ -0.55÷0.64, adj. R2 ~ 0.30÷0.35). The result of analysis of multiple regression indicated that the strongest correlation with ice cover of the Greenland Sea occurs in September, whereas in the Barents Sea in December (R ~ 0.70÷0.83). Changes in sea ice cover observed in that time explain 44% and 65% of changeability in winter balance of Austre Brogger and Midre Lovén glaciers, respectively. These results suggest that the process of heat transfer from the ocean to the atmosphere may by very intensive when the sea is merely covered with ice in the areas on the way of main directions of air mass advection. This will provide favourable condition for clear domination of sea air masses resulting in the increase in air temperature (Styszyńska 2000) and precipitation in the region of NW Spitsbergen. The summer balance of the examined glaciers is influenced by the changes in ice conditions only to a small extent. The only significant correlation with sea ice condition of the Greenland Sea was noted in August. Lack of the discussed correlation in summer is attributed to the influence of insolation and radiation factors whose importance increase during the polar day (as indicated in research by Lefauconnier et al. (1999)).
Źródło:
Problemy Klimatologii Polarnej; 2002, 12; 133-146
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
„Problemy Klimatologii Polarnej” w świetle wybranych statystyk
“Problems of Polar Climatology” journal as presented in selected statistics
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260917.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
analiza bibliometryczna
analiza cytowań
Web of Science
Google Scholar
czasopisma geograficzne
badania polarne
klimatologia
meteorologia
Polska
Arktyka
Antarktyka
bibliometric analysis
citation analysis
geographic journals
polar research
climatology
meteorology
Polska
Arctic
Antarctic
Opis:
W pracy przedstawiono analizę cytowań artykułów opublikowanych w 24 tomach rocznika „Problemy Klimatologii Polarnej” w latach 1992-2014 opracowaną na podstawie bazy Web of Science i serwisu naukowo-informacyjnego Google Scholar. Przeprowadzono również kwerendę takich cytowań w polskich publikacjach zwartych z zakresu geografii fizycznej, ekologii i biologii. Analizy ujawniły dużą liczbę cytowań w czasopismach z tzw. Listy Filadelfijskiej (164) i bardzo dużą liczbę cytowań w czasopismach i wydawnictwach polskich.
The paper presents an analysis of citations of articles published in the yearbook ‘Problems of Polar Climatology’ for the period 1992-2014 developed on the basis of Web of Science and Google Scholar scientific- information service. A query of such citations in Polish shorted publications was also carried out in the field of physical geography, ecology and biology. The Journal is indexed by "Cold Regions Bibliography" and Polish "BazTech". 272 articles by 104 authors were published in 24 volumes of ‘Problems of Polar Climatology’. Research problems of vast majority of works related to the Arctic, including, in particular, Svalbard (133 articles), which was the focus of Polish scientists’ research activities. Issues relating to the Antarctic were discussed in 66 articles and focused mainly on the characteristics of different climatic elements and weather processes in the area of Arctowski Station in the South Shetland Islands. The analysis revealed a large number of citations (164) in journals indexed in Science Citation Index Expanded (Table 1) and a very large number of citations in Polish journals (705) and publications (441) – Table 4. Taking into account very large number of citations, thematically narrow profile of journals and a relatively small group of authors dealing with issues of polar meteorology and climatology in Poland, it can be concluded that this magazine plays an important role in spreading research achievements in this field.
Źródło:
Problemy Klimatologii Polarnej; 2015, 25; 105-118
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ zmian temperatury wody powierzchniowej mórz Barentsa, Norweskiego i Grenlandzkiego na trend rocznej temperatury powietrza na Spitsbergenie
Influence of changes in sea surface temperature in the Barents, Norwegian and Greenland seas on the annual air temperature trend at Spitsbergen
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/261025.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powietrza
temperatura powierzchni morza
Spitsbergen
air temperature
sea surface temperature
Opis:
Praca omawia wpływ zmian temperatury wód powierzchniowych (SST - sea surface temperature) mórz Barentsa, Norweskiego i Grenlandzkiego zachodzących w okresie zimowego wychładzania (styczeń-kwiecień) na roczne i sezonowe wartości temperatury powietrza na Spitsbergenie w okresie 1912-2010. Stwierdzono, że zimowa SST rozległej powierzchni mórz otaczających Spitsbergen jest silnie skorelowana z roczną temperaturą powietrza na Spitsbergenie przez kolejne trzy lata (k, k+1, k+2). Powierzchnia akwenów, na których występują opóźnione korelacje z temperaturą powietrza na Spitsbergenie stopniowo zmniejsza się, a siła związków słabnie. Obszary, na których w roku k+2 korelacje utrzymują najwyższą (p < 0.001) istotność odtwarzają szlaki przenosu prądowego. Akwen, na którym zmienność SST z roku k najsilniej koreluje z roczną i zimową temperaturą powietrza na Spitsbergenie w kolejnych trzech latach (k, k+1, k+2) nie zmienia swojego położenia - jest to obszar leżący na pograniczu N części Morza Norweskiego i W części Morza Barentsa - między Bjornoyą a Nordkapem. Długookresowe zmiany temperatury powierzchni mórz wokółspitsbergeńskich regulują długookresową zmienność temperatury powietrza na Spitsbergenie, a występujący w przebiegu rocznej temperatury powietrza trend ma swoją genezę w zmianach zasobów ciepła w wodach tych mórz.
This work discusses the influence of changes in SST (sea surface temperature) of the Barents, Norwegian and Greenland seas occurring during winter cooling (January-April) on annual and seasonal air temperatures at Spitsbergen during 1912-2010. It was found that the winter SST of vast seas surrounding the region of Spitsbergen is strongly correlated with annual and winter air temperature at Spitsbergen during the next three years (k, k+1, k+2). The sea areas, where the delayed correlations with air temperature at Spitsbergen are observed, gradually decrease, and the strength of the correlation decreases. The routes of moving current represent the areas where correlations maintain the highest significance (p <0.001) in the year k+2. The sea area, where variability of SST from year k is most strongly correlated with the annual and winter air temperature at Spitsbergen in the next three years (k, k+1, k+2) does not change its position - this is the area lying on the border of the north part of the Norwegian Sea and the west part of the Barents Sea - between Bjornoya and Nordkap. Long-term sea surface temperature changes of vast seas surrounding the region of Spitsbergen regulate the long-term variability of the air temperature on Spitsbergen, and appearing in the course of the annual air temperature trend has his own genesis in changes of resources of the warmth in waters of these seas.
Źródło:
Problemy Klimatologii Polarnej; 2011, 21; 115-131
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu i jego przedpola (SW Spitsbergen) w sezonie zimowym 2006/2007
Sea-ice cover in Hornsund and its foreshore (SW Spitsbergen) during winter season 2006/2007
Autorzy:
Styszyńska, A.
Rozwadowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260707.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Hornsund
Spitsbergen
lód morski
sezon lodowy
sea ice
winter season
sea water temperature
Opis:
W sezonie zimowym 2006/2007 przebieg zlodzenia Hornsundu był odmienny od przeciętnego. Od listopada do marca średnia miesięczna temperatura powietrza była o 3.6–6.3 deg wyższa od średniej klima-tycznej (1978–2006). Ujemna temperatura wody powierzchniowej przy brzegu Isbjornhamny występowała od 28 IX 2006 do 27 V 2007 r. Najniższe wartości temperatury wody mierzono w drugiej i trzeciej dekadzie października (–1.8°C). Latem i jesienią 2006 r. dochodziło do bardzo intensywnego obłamywania się lodu lodowcowego, który okresowo tworzył zwarte skupienia wzdłuż brzegu. Rozwój lodu morskiego w Isbjornhamnie cechuje się stadial-nością. Pierwszy okres tworzenia się lodu morskiego miał miejsce między 6 października a 3 listopada, drugi – od połowy stycznia. W tym samym czasie dryfujący lód allochtoniczny pojawił się również na przedpolu fiordu. Od trzeciej dekady lutego do drugiej dekady kwietnia prawie cała powierzchnia Hornsundu pokryta była lodem dryfu-jącym o zmiennej zwartości. Na osiowej partii fiordu lód morski zanikł po 25 kwietnia, a w Brepollen – w trzeciej dekadzie czerwca 2007 r. Maksymalna wysokość wału lodu nabrzegowego w Isbjornhamnie osiągnęła 2.5 m.
This article presents the development of sea ice cover in the waters of central and western part of the Hornsund Fjord, as well as in its foreshore during winter season 2006–2007. Due to long lasting (November-March) high air temperatures (Fig. 1) the sea ice cover development of Hornsund was different from the average one. Significant decrease in air temperature was observed only in April (mean monthly –8.7°C). In such thermal conditions the maximum thickness of sea ice which might have been formed in the outer, sheltered from high seas areas of the fjord, estimated with the help of Zubov formula, could reach 47cm in January, 58cm in February, 66cm in March, up to 77–80cm in the period from April to May 2007 (Tab.1). In summer and autumn 2006 only brash glacier ice and small icebergs broken off the glaciers endings on the sea in Hornsund drifted in the waters of the fjord. At this time brash glacier ice and growlers broken off the Hans Glacier periodically concentrated densely along the coast of Isbjorhamna. The first forms of new ice (slush and grease ice as well as shuga) were observed close to the west coast of Isbjornhamna from 6th October till 3rd November. The second period of sea ice formation started on 7th December. However, the ice disappeared quickly because of strong winds. Not sooner than in the middle of January when severe frost was noted, a permanent ice cover was formed (young ice). But also this ice was broken and diverged in most part of the fjord. Fast ice was only observed in the internal waters of Hornsund, in the Brepollen, Burgerbukta and Samarinvagen bays. From the third decade of February till the end of April the ice cover of Hornsund experienced large fluctuations. During that period the entire area of Hornsund was covered with sea ice a few times. This phenomenon was noted when the allochtonic ice drifting in the waters of the Sorkapp Current entered western and central part of the fjord and when the central and inner parts were covered with ice formed in situ. This sea ice cover was several times destroyed by very strong east winds causing that most of ice was moved outside the fjord. At the beginning of May very strong E and SE winds caused ice removal from the axial part of Hornsund. Later, apart from two short episodes (19-29 May and 22-23 June) when open strips of allochtonic ice entered west and central part of the fjord, only single floes of broken-off the fast ice from Brepollen, Burgerbukta and Samarinvagen drifted in the waters of Hornsund. The ice season 2006/2007 ended on 19th July when the last floes of very rotten ice were observed drifting from the inside of the fjord with the tidal stream to its foreshore.
Źródło:
Problemy Klimatologii Polarnej; 2008, 18; 141-160
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu i jego przedpola (SW Spitsbergen) w sezonie zimowym 2005-2006
Sea-ice cover in Hornsund and its foreshore (SW Spitsbergen) during winter season 2005-2006
Autorzy:
Styszyńska, A.
Kowalczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/260735.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
lód morski
sezon lodowy
Hornsund
Spitsbergen
ice season
sea ice
Opis:
W sezonie zimowym 2005/2006 przebieg zlodzenia Hornsundu był odmienny od przeciętnego. Znaczący spadek temperatury powietrza wystąpił tylko w lutym i marcu. W pierwszej połowie zimy (XI–I) docho-dziło do okresowego wypełniania się zachodniej części fiordu lodem dryfującym w Prądzie Sorkapskim. W lutym na środkowej i zachodniej części Hornsundu pojawiły się początkowe postaci lodu. Większe pokrycie lodem wód fiordu miało miejsce jedynie w marcu, kiedy to w Brepollen występowała jednolita powłoka lodu młodego, na Isbjornhamnie krążki lodowe i lód młody, a po środkowej i zachodniej części Hornsundu dryfowały w pasmach zwarte lody napływające z zewnątrz. W połowie kwietnia doszło do oczyszczenia większości fiordu z lodu. Dłużej lód utrzymywał się jedynie w Brepollen. 27 czerwca w zachodniej części fiordu pojawiły się pasma lodu dryfują-cego w Prądzie Sorkapskim. Lód ten przy północnym brzegu Hornsundu utrzymywał się do pierwszych dni lipca.
This article presents the development of sea ice cover in the waters of central and western part of the Hornsund Fjord, as well as in its foreshore during winter season 2005–2006. Due to long lasting (October-January) high air temperatures (Fig.1) the sea ice cover development of Hornsund was different from the average one. Significant decrease in air temperature was observed only in February (mean monthly –7.5°C) and in March (mean monthly –12°C). In such thermal conditions the maximum thickness of sea ice which might have been formed in the outer, sheltered from high seas areas of the fjord, estimated with the help of Zubov formula, could reach 35cm in thickness in January 2006, 48cm in February, up to 66–69cm in the period from March to May 2006 (Tab.1). In summer and autumn 2005 only brash glacier ice and small icebergs broken off the glacier found in the sea in Hornsund drifted in the waters of the fjord. At this time brash glacier ice and growlers broken off the Hans Glacier periodically concentrated densely along the coast of Isbjorhamna. In the first part of winter (November - January) the western part of the fjord was periodically covered with drift ice in the Sorkapp Current. At this time brash glacier ice from the adjacent glacier concentrated along the western coast of Isbjorhamna. The first, autochthonic ice started to be formed at Brepollen at the beginning of November and at Burgerbukta at the beginning of January. In February new ice appeared in the central and western part of Hornsund. The sea ice cover in the fjord was more extensive only in March when cover of young ice (10-30cm) was observed at Brepollen, pancake and young ice at Isbjorhamna, and coming from outside, strips of close pack ice drifted in the central and western part of Hornsund. In the middle of April the majority of fjord area was found ice free from sea ice. Ice cover was only observed at Brepollen. On 27th June strips of drifting ice in the Sorkapp Current appeared in the western part of the fjord. This ice remained at the northern coast of Hornsund till the first days of July.
Źródło:
Problemy Klimatologii Polarnej; 2007, 17; 147-158
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany temperatury powietrza na morzach Arktyki Rosyjskiej i ich konsekwencje dla żeglugi na północnej drodze morskiej
Changes of air temperature in Russian Arctic seas and their implications for shipping in the northern sea route
Autorzy:
Pastusiak, T.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260788.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powietrza
Północna Droga Morska
Arktyka Rosyjska
air temperature
Northern Sea Route
Russian Arctic
Opis:
Praca omawia zmiany średniej miesięcznej temperatury powietrza na morzach Arktyki Rosyjskiej w latach 1988-2013. Wartości średnie wieloletnie z tego okresu porównano z danymi podawanymi w locjach rosyjskich dla okresu 1936-1987. Stwierdzono, że w badanym okresie na wszystkich badanych stacjach doszło do wzrostu temperatury powietrza. Największy wzrost miał miejsce w sezonie chłodnym (o 1,5-2 deg). W sezonie ciepłym wzrosty były znacznie mniejsze i na ogół nie przekraczały 1 deg. Tylko na 3 stacjach doszło do wydłużenia okresu występowania dodatnich średnich miesięcznych wartości temperatury powietrza (Kanin Nos – w maju, O. Biełyj – w czerwcu, O. Wrangla – we wrześniu). Choć na wszystkich stacjach nastąpił wzrost wartości średnich, to daleko nie wszystkie te zmiany są istotne statystycznie. W latach 1988-2013, w pełni sezonu ciepłego, w lipcu i sierpniu, temperatura powietrza nie stanowi żadnego utrudnienia dla żeglugi na Północnej Drodze Morskiej. Występująca okresowo, w czerwcu i wrześniu, niska lub nawet bardzo niska temperatura powietrza stanowić może tylko pewne utrudnienie dla żeglugi na PDM, związane przede wszystkim z prowadzeniem na statku lub w porcie prac na wolnym powietrzu oraz z występowaniem zjawisk pochodnych – oblodzeniem statku, ograniczoną widzialnością i utrzymywaniem się (w czerwcu) lub tworzeniem się już (we wrześniu) nowej pokrywy lodowej.
The paper discusses changes of the mean monthly air temperature on the Russian Arctic seas in the years 1988-2013. The mean long-term values for the period compared with the data contained in the Russian Sailing Directions for the period 1936-1987. There was an increase in air temperature on all studied stations in the analyzed period. The largest increase occurred in a cold season (1.5-2 degrees Celsius). Increases of temperature in the warm season were much smaller than in cold period and were generally not exceed 1 degree Celsius. Only at 3 stations the lengthening of the period of average monthly positive air temperature (Kanin Nos Peninsula – in May, Island Belyy – in June, Wrangel Island – in September) was observed. An increase of average values has been observed at all stations, but not all these changes were statistically significant. In the years 1988-2013, while fully warm season – in July and August – air temperature does not pose any difficulties for the navigation on the Northern Sea Route. Occurring periodically – in June and September – a low or even very low air temperature may only cause some difficulties for navigation on the Northern Sea Route. This is primarily related to navigation of the vessel at sea or in port during outdoor work. It is also associated with the occurrence of related phenomena – limited visibility, icing the vessel and the persistence of old (in June) or the formation of already new (in September) ice cover.
Źródło:
Problemy Klimatologii Polarnej; 2015, 25; 227-238
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany temperatury wody powierzchniowej na morzach Arktyki Rosyjskiej i ich konsekwencje dla żeglugi na Północnej Drodze Morskiej (1979-2016)
Changes of sea surface temperature in the Russian Arctic Seas and their implications for shipping in the Northern Sea Route (1979-2016)
Autorzy:
Styszyńska, A.
Pastusiak, T.
Powiązania:
https://bibliotekanauki.pl/articles/260798.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura wody powierzchniowej
zmiany temperatury wody
Północna Droga Morska
Arktyka Rosyjska
sea surface temperature
changes in water temperature
Northern Sea Route
Russian Arctic
Opis:
Praca omawia zmiany średniej miesięcznej temperatury wody powierzchniowej na morzach Arktyki Rosyjskiej w latach 1979-2016. Stwierdzono, że w badanym okresie następował powolny wzrost temperatury wody. Jednakże tylko na Morzu Barentsa był on istotny statystycznie we wszystkich miesiącach roku, a w SW części Morza Karskiego oraz w zachodniej części Morza Czukockiego w okresie od czerwca do grudnia. W analizowanym 38.leciu największy wzrost temperatury wody powierzchniowej miał miejsce na Morzu Wschodniosyberyjskim (+0,57°C/10 lat w sierpniu i +0,44°C/10 lat we wrześniu) oraz w SW części Morza Karskiego w lipcu (+0,53°C/10 lat). W dalszym ciągu na wszystkich morzach, poza Morzem Barentsa, do czerwca włącznie temperatura wody ma wartości niższe od temperatury jej zamarzania przy swoistym dla danego morza zasoleniu. Najpóźniej temperaturę zamarzania osiągają wody Morza Barentsa gdzie w ostatniej dekadzie (2006-2015) na podejściu do północnego wejścia na PDM rzadko kiedy temperatura wody spadała poniżej temperatury zamarzania oraz wody Morza Czukockiego (w grudniu). Oznacza to, że statki pokonujące PDM w listopadzie będą miały szansę przepłynąć ją po „czystej” wodzie lub w cienkich, młodych lodach, które dla współczesnych statków nie stanowią większego zagrożenia.
The paper discusses changes of the mean monthly sea surface temperature on the Russian Arctic seas in the years 1979-2016. It was found that during the period under investigation there was a slow increase in water temperature. However, only in the Barents Sea it was statistically significant in all months of the year, and in the SW part of the Kara and western Chukchi seas from June to December. In the analyzed 38 years the highest rise in surface water temperature was recorded in the East Siberian Sea (+0.57°C/decade in August and +0.44°C/decade in September) and in the SW Kara Sea in July (+0.53°C/decade). Still on all these seas, except for the Barents Sea, until June inclusive, the water temperature was lower than its freezing temperature for a particular salinity specific for the sea. At the latest, freezing temperatures reached the waters of the Barents Sea, where in the last decade (2006-2015) at the approach to the north entrance of the Northern Sea Route (NSR) rarely water temperature has fallen below the freezing point. At the same time, the Chukchi Sea waters reached freezing temperatures in December. This means that vessels sailing through the NSR in November will have the chance to pass it through "ice free" water or in thin, young ice, which for modern ships is not a major threat.
Źródło:
Problemy Klimatologii Polarnej; 2016, 26; 165-177
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies