- Tytuł:
- Estimation of potential elastic energy during the countermovement phase of a vertical jump based on the force-displacement curve
- Autorzy:
-
Struzik, Artur
Zawadzki, Jerzy - Powiązania:
- https://bibliotekanauki.pl/articles/306373.pdf
- Data publikacji:
- 2019
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
skoki
elastyczność
sztywność
rozciąganie
countermovement jump
elasticity
quasi-stiffness
stretch-shortening cycle - Opis:
- Purpose: One inconvenience in finding experimental evidence for the relationship between potential elastic energy and vertical jump height is the difficulty of estimating the value of the stored potential elastic energy. Therefore, the aim of this study is to present a simple method of estimating the potential elastic energy stored by lowering the center of mass during the countermovement phase of a vertical jump. Methods: The research was conducted on 30 able-bodied male university students (age: 20 years, body height: 183.1 ± 7.9 cm, body mass: 80.3 ± 10.4 kg). Each participant performed 10 single countermovement jumps with arms akimbo to maximal height. Measurements employed a Kistler force plate. The value of potential elastic energy was estimated based on the curve of dependence of the ground reaction force on the vertical displacement of the jumper’s center of mass. Results: The mean value (±SD) of potential elastic energy collected due to lowering of the center of mass during the countermovement phase of a vertical jump was 183 ± 69 J. 24.3% of this value can be considered the part of the potential elastic energy (44 ± 21 J) that comes from the transformation of kinetic energy. The total change in gravitational potential energy due to lowering the center of mass was 240 ± 58 J. Conclusions: This estimation of potential elastic energy is only general and rough. However, certain estimations of potential elastic energy may offer some insight into the phenomenon relating vertical quasi-stiffness and the ability to store potential elastic energy with vertical jump height.
- Źródło:
-
Acta of Bioengineering and Biomechanics; 2019, 21, 1; 153-160
1509-409X
2450-6303 - Pojawia się w:
- Acta of Bioengineering and Biomechanics
- Dostawca treści:
- Biblioteka Nauki