Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Strosznajder, Robert" wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Age-related alteration of poly(ADP-ribose) polymerase activity in different parts of the brain.
Autorzy:
Strosznajder, Joanna
Jęśko, Henryk
Strosznajder, Robert
Powiązania:
https://bibliotekanauki.pl/articles/1044356.pdf
Data publikacji:
2000
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
PARP
aging
brain
Opis:
Poly(ADP-ribose) polymerase (PARP) is a conserved enzyme involved in the regulation of DNA repair and genome stability. The role of PARP during aging is not well known. In this study PARP activity was investigated in nuclear fractions from hippocampus, cerebellum, and cerebral cortex of adult (4 months), old adult (14 months) and aged (24-27 months) rats. Concomitantly, the free radical evoked lipid peroxidation was estimated as thiobarbituric acid reactive substances (TBARS). The specific activity of PARP in adult brain was about 25, 21 and 16 pmol/mg protein per min in hippocampus, cerebellum and cerebral cortex, respectively. The enzyme activity was higher in all investigated parts of the brain of old adults. In aged animals PARP activity was lower in hippocampus by about 50%, and was unchanged in cerebral cortex and in cerebellum comparing to adult rats. The concentration of TBARS was the same in all parts of the brain and remained unchanged during aging. There is no direct correlation between PARP activity and free radical evoked lipid peroxidation during brain aging. The lowered enzyme activity in aged hippocampus may decrease DNA repair capacity which subsequently may be responsible for the higher vulnerability of hippocampal neurons to different toxic insults.
Źródło:
Acta Biochimica Polonica; 2000, 47, 2; 331-337
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of amyloid beta peptide on poly(ADP-ribose) polymerase activity in adult and aged rat hippocampus.
Autorzy:
Strosznajder, Joanna
Jęśko, Henryk
Strosznajder, Robert
Powiązania:
https://bibliotekanauki.pl/articles/1044342.pdf
Data publikacji:
2000
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
aging
amyloid
poly(ADP-ribose) polymerase
hippocampus
neurotoxicity
Opis:
It is suggested that the fibrillar amyloid beta peptide (Aβ) in brain plays a direct role in neurodegeneration in Alzheimer's disease, probably through activation of reactive oxygen species formation. Free radicals and numerous neurotoxins elicit DNA damage that subsequently activates poly(ADP-ribose) polymerase (PARP, EC 2.4.2.30). In this study the effect of neurotoxic fragment (25-35) of full length Aβ peptide on PARP activity in adult and aged rat hippocampus was investigated. In adult (4 month old) rat hippocampus the Aβ 25-35 peptide significantly enhanced PARP activity by about 80% but had no effect on PARP activity in cerebral cortex and in hippocampus from aged (24-27 month old) rats. The effect of Aβ peptide was reduced by half by the nitric oxide synthase inhibitor N-nitro-L-arginine. Stimulation of glutamate receptor(s) itself enhanced PARP activity by about 80% in adult hippocampus. However, Aβ 25-35 did not exert any additional stimulatory effect. These results indicate that Aβ, through NO and probably other free radicals, induces activation of DNA bound PARP activity exclusively in adult but not in aged hippocampus.
Źródło:
Acta Biochimica Polonica; 2000, 47, 3; 847-854
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of aging and oxidative/genotoxic stress on poly(ADP-ribose) polymerase-1 activity in rat brain
Autorzy:
Strosznajder, Robert
Jesko, Henryk
Adamczyk, Agata
Powiązania:
https://bibliotekanauki.pl/articles/1041342.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
aging
poly(ADP-ribosyl)ation
brain
p53 protein
PARP-1
genotoxic stress
oxidative stress
Opis:
Poly(ADP-ribose) polymerase-1 (PARP-1, EC 2.4.2.30), a DNA-bound enzyme, plays a key role in genome stability, but after overactivation can also be responsible for cell death. The aim of the present study was to investigate PARP-1 activity in the hippocampus, brain cortex, striatum and cerebellum in adult (4 months) and aged (24 months) specific pathogen free Wistar rats and to correlate it with PARP-1 protein level and p53 expression. Moreover, the response of PARP-1 in adult and aged hippocampus to oxidative/genotoxic stress was evaluated. Our data indicated a statistically significant enhancement of PARP-1 activity in aged hippocampus and cerebral cortex comparing to adults without statistically significant changes in PARP-1 protein level. The expression of p53 mRNA was elevated in all aged brain parts with the exception of the cerebral cortex. Our data suggest that enhancement of PARP-1 activity and p53 expression in aged brain may indicate higher DNA damage. Our data also indicate that during excessive oxidative/genotoxic stress there is no response of PARP-1 activity in aged hippocampus in contrast to a significant enhancement of PARP-1 activity in adults which may have important consequences for the physiology and pathology of the brain.
Źródło:
Acta Biochimica Polonica; 2005, 52, 4; 909-914
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Molecular mechanism of PC12 cell death evoked by sodium nitroprusside, a nitric oxide donor
Autorzy:
Pytlowany, Magdalena
Strosznajder, Joanna
Jęśko, Henryk
Cąkała, Magdalena
Strosznajder, Robert
Powiązania:
https://bibliotekanauki.pl/articles/1040752.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
nitric oxide
apoptosis-inducing factor
PC12
cell death
lipoxygenase
cyclooxygenase
Opis:
Nitric oxide (NO) is a potent extracellular and intracellular physiological messenger. However, NO liberated in excessive amounts can be involved in macromolecular and mitochondrial damage in brain aging and in neurodegenerative disorders. The molecular mechanism of its neurotoxic action is not fully understood. Our previous data indicated involvement of NO in the release of arachidonic acid (AA), a substrate for cyclo- and lipoxygenases (COX and LOX, respectively). In this study we investigated biochemical processes leading to cell death evoked by an NO donor, sodium nitroprusside (SNP). We found that SNP decreased viability of pheochromocytoma (PC12) cells in a concentration- and time-dependent manner. SNP at 0.1 mM caused a significant increase of apoptosis-inducing factor (AIF) protein level in mitochondria. Under these conditions 80% of PC12 cells survived. The enhancement of mitochondrial AIF level might protect most of PC12 cells against death. However, NO released from 0.5 mM SNP induced massive cell death but had no effect on protein level and localization of AIF and cytochrome c. Caspase-3 activity and poly(ADP-ribose) polymerase-1 (PARP-1) protein levels were not changed. However, PARP activity significantly decreased in a time-dependent manner. Inhibition of both COX isoforms and of 12/15-LOX significantly lowered the SNP-evoked cell death. We conclude that AIF, cytochrome c and caspase-3 are not responsible for the NO-mediated cell death evoked by SNP. The data demonstrate that NO liberated in excess decreases PARP-1 activity. Our results indicate that COX(s) and LOX(s) are involved in PC12 cell death evoked by NO released from its donor, SNP.
Źródło:
Acta Biochimica Polonica; 2008, 55, 2; 339-347
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies