Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Siwek, Zuzanna" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Autonomia adolescentów w świetle ich przywiązania i relacji rodzinnych
Autorzy:
Siwek, Zuzanna
Powiązania:
https://bibliotekanauki.pl/articles/637334.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
Tematy:
autonomy
self-determination
attachment
family of origin
adolescence
Opis:
The study concerns the connection between the feeling of autonomy implied as self-determination and family relationships among 17-to-19-year-old adolescents. The study was inspired by Bowlby’s theory of attachment and Ryan and Deci’s theory of self-determination. The subjects were 145 adolescent high-school students (82 female and 61 male). The Inventory of Parent and Peer Attachment, Family of Origin Scale and Self-Determination Scale were used in this study. The results led to a conclusion that healthy family relationships and a secure pattern of attachment correspond to a higher autonomy seen as self-determination. The Self-Determination Scale that was used reached a high reliability index, which suggests that it might be a useful tool for future studies and that it might be worth conducting its cultural adaptation.
Źródło:
Psychologia Rozwojowa; 2012, 17, 3; 25-38
1895-6297
2084-3879
Pojawia się w:
Psychologia Rozwojowa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning-based framework for tumour detection and semantic segmentation
Autorzy:
Kot, Estera
Krawczyk, Zuzanna
Siwek, Krzysztof
Królicki, Leszek
Czwarnowski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2173573.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
medical imaging
tumour detection
semantic segmentation
image fusion
technika deep learning
głęboka nauka
obrazowanie medyczne
wykrywanie guza
segmentacja semantyczna
połączenie obrazu
Opis:
For brain tumour treatment plans, the diagnoses and predictions made by medical doctors and radiologists are dependent on medical imaging. Obtaining clinically meaningful information from various imaging modalities such as computerized tomography (CT), positron emission tomography (PET) and magnetic resonance (MR) scans are the core methods in software and advanced screening utilized by radiologists. In this paper, a universal and complex framework for two parts of the dose control process – tumours detection and tumours area segmentation from medical images is introduced. The framework formed the implementation of methods to detect glioma tumour from CT and PET scans. Two deep learning pre-trained models: VGG19 and VGG19-BN were investigated and utilized to fuse CT and PET examinations results. Mask R-CNN (region-based convolutional neural network) was used for tumour detection – output of the model is bounding box coordinates for each object in the image – tumour. U-Net was used to perform semantic segmentation – segment malignant cells and tumour area. Transfer learning technique was used to increase the accuracy of models while having a limited collection of the dataset. Data augmentation methods were applied to generate and increase the number of training samples. The implemented framework can be utilized for other use-cases that combine object detection and area segmentation from grayscale and RGB images, especially to shape computer-aided diagnosis (CADx) and computer-aided detection (CADe) systems in the healthcare industry to facilitate and assist doctors and medical care providers.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e136750
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning-based framework for tumour detection and semantic segmentation
Autorzy:
Kot, Estera
Krawczyk, Zuzanna
Siwek, Krzysztof
Królicki, Leszek
Czwarnowski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2128156.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
medical imaging
tumour detection
semantic segmentation
image fusion
technika deep learning
głęboka nauka
obrazowanie medyczne
wykrywanie guza
segmentacja semantyczna
połączenie obrazu
Opis:
For brain tumour treatment plans, the diagnoses and predictions made by medical doctors and radiologists are dependent on medical imaging. Obtaining clinically meaningful information from various imaging modalities such as computerized tomography (CT), positron emission tomography (PET) and magnetic resonance (MR) scans are the core methods in software and advanced screening utilized by radiologists. In this paper, a universal and complex framework for two parts of the dose control process – tumours detection and tumours area segmentation from medical images is introduced. The framework formed the implementation of methods to detect glioma tumour from CT and PET scans. Two deep learning pre-trained models: VGG19 and VGG19-BN were investigated and utilized to fuse CT and PET examinations results. Mask R-CNN (region-based convolutional neural network) was used for tumour detection – output of the model is bounding box coordinates for each object in the image – tumour. U-Net was used to perform semantic segmentation – segment malignant cells and tumour area. Transfer learning technique was used to increase the accuracy of models while having a limited collection of the dataset. Data augmentation methods were applied to generate and increase the number of training samples. The implemented framework can be utilized for other use-cases that combine object detection and area segmentation from grayscale and RGB images, especially to shape computer-aided diagnosis (CADx) and computer-aided detection (CADe) systems in the healthcare industry to facilitate and assist doctors and medical care providers.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e136750, 1--7
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies