Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sikder, P. S." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Biomass fuel cell based distributed generation system for Sagar Island
Autorzy:
Kumar, P.
Sikder, P. S.
Pal, N.
Powiązania:
https://bibliotekanauki.pl/articles/200813.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
biomass
fuel cell
distributed generation systems
inverter
cost analysis
biomasa
ogniwo paliwowe
falownik
analiza kosztów
generacja rozproszona
Opis:
Sustainable development of an area is highly dependable on reliable electrical energy supply. Due to the depletion of fossil fuels, and the contamination of the environment due to the generation of energy from primary energy sources, the energy sector is reforming and shifting towards a new era where renewable energy sources will become the primary focus of attention. At present, energy researchers and government organizations are interested in a distributed generation system using local renewable energy sources to electrify the rural areas situated far away from our mainland. Here, a biomass-based power supply system is being analyzed and compared with other potential power supply systems for Sagar Island. Sagar Island is the world’s largest river-based island situated in the Sundarban deltaic complex, where the potential of biomass is huge due to the availability of natural forests, barren coastal areas full of weeds, agricultural by-products, cattle manure and waste materials from other sources. Here, an attempt has been made to provide sustainable electrical energy to the rural areas of the isolated Sagar Island for the sustainable development of the local people. This was done by means of using biomass and a fuel cell based electricity generation system.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 5; 665-674
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improvements in the Structural Integrity of Resin Based Combustible Cartridge Cases (CCC) at Elevated Temperatures
Autorzy:
Dey, A.
Athar, J.
Gogoi, S.
Navle, P. B.
Sikder, A. K.
Powiązania:
https://bibliotekanauki.pl/articles/357926.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
CCC
deformation
PVAc
ammunition
cartridge
gun
Opis:
An advanced, solvent-less resin based Combustible Cartridge Case (CCC), designed to resolve the inherent problems of shrinkage and limited mechanical strength associated with the gelatinisation of nitrocellulose, has already been developed. The felt-moulded components contain thermoplastic polyvinyl acetate (PVAc) resin as the binder and the enhanced mechanical strength is achieved by carrying out hot compaction of dry felts at an elevated temperature (105 ± 2 °C). Presently, resin based technology is adopted for tank gun ammunition and also for the developed modular CCCs, i.e. the Modular Combustible Case (MCC) for different types of artillery gun ammunition. However, during exhaustive trials conducted with the resin based CCCs in 120 mm tank gun ammunition at three temperatures, i.e. -10, 27 and 55 °C, severe geometrical deformation was noticed when the rounds were conditioned at 55 °C for 24 h., adversely affecting the loading of rounds into the gun chamber. This was attributed to the combined effects of softening of the resin at that temperature and the load of the projectile/ shell (14.4 kg) experienced by the CCC region during conditioning of the round in the horizontal mode. In order to resolve this problem of deformation, PVAc resin was required to be modified. The PVAc resin was modified to the form of a nanocomposite. PVAc nano composite was prepared by dispersing organically modified nano clay, i.e. Cloisite 30B, into the resin before making the CCCs. The nanocomposite of PVAc resin was characterized by FTIR, DMA, softening point measurement etc. The results showed a remarkable improvement in the glass transition temperature (Tg) and in the softening temperature of the modified PVAc resin. This modified PVAc resin was used to prepare CCCs. Furthermore, these CCCs were coated with hexamethylene diisocyanate (HMDI) on the inner and the outer surfaces. The isocyanate coating becomes crosslinked in the matrix, thereby improving the softening point as well as the mechanical properties of the CCCs. These modified CCCs were repeatedly tested at 55 and 60 °C for 24 h. After testing, it was found that no deformation had taken place and the assembled rounds were easily loaded into the gun chamber. The use of the PVAc nanocomposite in the preparation of resin based CCCs, followed by isocyanate coating, is an effective means of achieving the required improvement in structural integrity of the resin CCCs at elevated temperatures.
Źródło:
Central European Journal of Energetic Materials; 2015, 12, 1; 117-127
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies