Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Shariff, N. N. M." wg kryterium: Autor


Tytuł:
A Case Study of Explosion A Single Solar Burst Type III and IV Due to Active Region AR1890
Autorzy:
Hamidi, Z. S.
Ibrahim, M. B.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412554.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
solar burst
III
IV
radio region
X-ray region
solar flare
active region
Opis:
Using data from a BLEIN Callisto site, we aim to provide a comprehensive description of the synopsis formation and dynamics of a a single solar burst type III and IV event due to active region AR1890. This eruption has started since 14:15 UT with a formation of type III solar burst. To investigate the importance of the role of type III solar burst can potentially form a type IV solar burst, the literature review of both bursts is outlined in detailed. The orientation and position of AR1890 make the explosion of a class C-solar flare is not directly to the Earth. Nevertheless, it is clear that the interactions of others sunspots such as AR1893,AR1895,AR1896, AR1897 and AR1898 should be studied in detail to understand what makes the type III burst formed before the type IV solar burst.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 19, 2; 171-180
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Alternating of Solar Radio Burst Type III and IV of Thermal and Non-Thermal Plasma Radiation
Autorzy:
Hamidi, Z. S.
Husien, Nurul Hazwani
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1193005.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
burst
low frequency
solar radio
type III
type IV e-CALLISTO
Opis:
A preliminary correlation study of the solar burst type III with a type Iv solar burst of has been made. On the basis of this study and in combination with the observation in radio emission, an interpretation of the mechanism of the occurrence of this event has been proposed. We have noted that an individual type III burst also can be observed at 13:54-13:58 UT from 500 MHz. Based on 3 days observation beginning from 31st March 2015, the solar activity is gradual increased. The highest solar flare can be observed is only a class of M8 flare. There was a CMEs event that directed to the Earth is detected. From the selected event, although theoretically solar radio burst type III is alternating with type IV solar burst. This huge explosion generated the M-class flare which can affect the Earth and satellites. The solar wind velocity recorded is 384.2 km/second while the density of protons is 3.6 protons/cm3. The total magnetic field during this event also quite big which is 4.6nT. The alternating of solar burst type III and IV would probably depends on the tendencies to form the CMEs event. The morphology of thermal and non-thermal flare plasma is of particular significance because it holds many important signatures of the energy release process.
Źródło:
World Scientific News; 2016, 31; 88-99
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of Active Regions 11036 Characteristics Leads To Solar Flare Class C7.2 Phenomena
Autorzy:
Zainol, N. H.
Hamidi, Z. S.
Husien, Nurulhazwani
Ali, M. O.
Sabri, S. N. U.
Shariff, N. N. M.
Faid, M. S.
Monstein, C.
Ramli, Nabilah
Powiązania:
https://bibliotekanauki.pl/articles/1192106.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Solar Radio Burst Type II
solar flare
Callisto network
active region
Opis:
The solar flares are generated from electromagnetic radiation which is sudden oscillation of the stored energy in the magnetic field of the sun. Flares are categorized according to their brightness as C, M and X, where X is the brightest. The X class flares caused a long-time solar storm and ionospheric radio waves sparkling. The moderate level M class flares mostly effect polar cups and cause short-time radio sparkling. However, the C class flares are weaker than the X and M flares. In this work, we present an active region from the disturbance of magnetic field on the area of the Sun and may lead to powerful event if the magnetic field become stronger. The CALLISTO system network that has been installed in Gauri, India observed data that contain Solar Radio Burst Type II (SRBT II) occurred on 22nd December 2009 at 04:57 UT to 05:02 UT. Five active regions were obtained from online data via internet from the Space Weather website and the Solar Monitor website. All data and information from these sources assist in analyze of the phenomena. The magnetic field and X-ray flux, proton density increase the possibilities that SRBT II observed by CALLISTO network to generate powerful solar flare. When X-ray flux level was at maximum, then solar flare was at peak point. However, solar activity level was low because among of five active regions present, only one C-class flare event occurred. The most active region that contributes this event is an AR11036 with C-class flare.
Źródło:
World Scientific News; 2016, 45, 2; 80-91
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of Antenna Temperature and Radar Cross Section of Log Periodic Dipole Antenna
Autorzy:
Hamidi, Z. S.
Saad, M. Azren Mat
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192599.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
Log Periodic Dipole Antenna
type III
radio region
antenna temperature radar cross section
Opis:
The LPDA antenna because it is very suitable and economic amount the types of antennas. It consists of an array of dipoles in which their lengths and spacing are arranged in a log periodic manner, but not all elements in the system are active on a single frequency of operation. The temperature or Antenna Noise Temperature depends on its gain pattern and the thermal environment that it is placed in. We need to design an antenna that can detect the data and monitor the solar burst type III in radio region. It must be sensitive to a broad frequency range and angular distribution of the incident radio pulse and capable to handle the noise issue that is necessary to gain the pure signal. With large instantaneous bandwidths and high spectral resolutions, these instruments will provide increased imaging sensitivity and enable detailed measurements of the dynamic solar burst. For standardized the time, GPS clock is used to control the sampling time of the spectrometer and a tracking controller control the antenna direction. In conclusion, LPDA is the most practical antennas provide general broadband transmission and reception in a wide range of frequency.
Źródło:
World Scientific News; 2016, 55; 126-136
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of Radiation Pattern and Standing-Wave Ratio (SWR) of the Gray Hoverman Antenna
Autorzy:
Hamidi, Z. S.
Hamidin, M. Azril
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/1192610.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Antenna
radiation pattern
radio region
gray Hoverman antenna
Opis:
The radio antenna may be defined as the structure associated with the region of transition between a guided wave and free-space wave, or vice versa. Antennas convert electrons to photon, or vice versa. All involve the same basic principle that the radiation is produced by accelerated or decelerated charge. In order to enhance the reading and measurement, forward scattering technique is used to acquire more data. The aim of this paper is to highlight the theory part of radiation pattern and the analysis of this parameter. From the results, the radiation pattern of the antenna with a range of 700 MHz with the range of -11.0 dB till 10.6 dB. The results show that the maximum front lobe value is 14.4 dB. The back lobe value is 3.32 dBi and the side lobe is -18 dBi. As the gain of a directional antenna increases, the coverage distance increases, but the effective coverage angle decreases due to the lobes being pushed in a certain direction because there is a little energy on the back side of the antenna. The SWR is high in the range of 1-100 MHz with 106 but suddenly decreased to 10 at 100 MHz. The patterns are very dynamics and it less that 10 from 530 MHz to 1000 MHz. We conclude that The simulation results of this antenna structure are quite good as this antenna structure can work in particular frequency bands with a good amount of gain of 14.4 dBi, the SWR of below 10dBi, and impedance matching around 100 ohm.
Źródło:
World Scientific News; 2016, 60; 13-25
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of Solar Burst Type II, III, and IV and Determination of a Drift Rate of a Single Type III Solar Burst
Autorzy:
Hamidi, Z. S.
Ibrahim, M. B.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411732.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
solar burst
type II,III,IV
radio region
X-ray region
solar flare
active region
Opis:
The main feature of solar radio type II, III and IV burst is outlined. In this event there are three combinations of bursts that related to the solar flare phenomenon on 6th July 2012. This event is one of good example to observe how far the influence of type II burst could impact the formation of type IV burst and III solar bursts. At first stage, it was observed that a sub-type of H burst form within 2 minutes before type IV solar burst form. The type IV burst is due to the eruption of active region AR 1515 with a fine structure (FS). We used a Blein CALLISTO data in this case. Further analysis also showed that the total energy of the burst are in the range of 4.875 × 10-25 J to 8.48 × 10-25 J and plasma frequency is equal to 1.24 × 104 Hz. Therefore, we could say that in this case, before the solar burst type III occurred, the ejection of CMEs already ejected.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 19, 2; 160-170
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of the Electron Density and Drift Rate of Solar Burst Type III During 13th of May 2015
Autorzy:
Ali, M. O.
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192997.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
Sun
X-ray region
radio region
solar burst
solar flare
type III
Opis:
During 13th of May 2015, the solar wind is very high velocity, which is 733 kms-1 as compared to 367.5 kms-1. It is believed that the plasma–magnetic field interactions in the solar corona can produce suprathermal electron populations over periods from tens of minutes to several hours, and the interactions of wave-particle and wave-wave lead to characteristic fine structures of the emission. An intense and broad solar radio burst type II was recorded by CALLISTO spectrometer from 20-85 MHz. Using data from a the Blein observatory, the complex structure of solar burst type III can also be found in the early stage of the formation of type III solar burst type event due to active region AR 12339. The drift rate of solar burst type III exceeds 1.0 MHz/s with 6.318 x1012 e/m3 a density of electron in the solar corona. There were also 2 groups of solar radio burst type III were observed. This CME was detected at 08:36 UT which is 1and ½ hour after the solar burst detected. This event shows a strong radiation in radio region, but not in X-ray region.
Źródło:
World Scientific News; 2016, 31; 1-11
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Observation of an Inverted Type U Solar Burst Due to AR1429 Active Region
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412209.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
CALLISTO
low frequency
solar burst
type U
Radio Frequency Interference (RFI)
Opis:
A detailed investigation of an inverted type U solar burst in meter region and their associated the solar flare and Coronal Mass Ejections (CMEs) has been reported. Solar type U burst has been observed at the National Space Centre, Banting, Selangor detected by the Compound Low Cost Low Frequency Transportable Observatories (CALLISTO) system in the 150 MHz till 400 MHz at the low frequency band. An inverted U type is occurring on 9th March 2012 between 4:00 UT to 4:15 UT within 1 minute (4:12 − 4:13) UT. From the dynamic spectra of CALLISTO, we have identified metric type U burst with maximum emission near the frequency 385MHz. In specific, the continuum type III burst will soon structure this burst due to our observations. Other types such as type II and IV are only appearing only after type U burst is ejected and appear at the same point of the solar flare event. Since the U burst activity coincides with the peak of the hard X-ray flare at 4:12UT in AR1429, we classified that the event is associated with the injection of the high energetic particles. In conclusion, it is confirmed that an inverted type U burst is initiated after a complex and a group solar radio burst type III.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 10; 81-90
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An X-ray Observations of A Gradual Coronal Mass Ejections (CMEs) on 15th April 2012
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Wan Zulkifli, W. N. A.
Ibrahim, M. B.
Arifin, N. S.
Amran, N. A.
Powiązania:
https://bibliotekanauki.pl/articles/411850.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun Coronal Mass Ejections (CMEs)
solar corona
solar flare
solar cycle
Opis:
In the present work, we will highlight the solar observation during 15th April 2012, solar filament eruption which is accompanied by an intense and gradual Coronal Mass Ejections (CMEs) The explosion of CMEs was observed at 2:12:06 UT and also can be observed by the Solar Dynamics Observatory (SDO) with an Active Region AR1458 is crackling with C-class solar flares. The solar flare class B3 and C2 were observed beginning 2241 UT and 0142 UT. The event is considered as second largest CMEs been detected since five years. Although the solar activity within a few days is considered quite low and there are no proton events were observed at geosynchronous orbit., the is still an unexpected explosion of CMEs can be occurred. The radio flux number (10.7 cm) exceeds 102 with the number of sunspot and area of sunspot increased to 77 and 270. The velocity of CMEs was calculated based on the LASCO2 data. From the results, it is clearly seen that the range of the velocity is between 200 kms-1 to 2000 kms-1. This wide of range proved that the mechanism of the CMEs is a gradual process. The explosion of CMEs velocity is located from 80º - 255º from North of the Sun. We can then conclude that currently, the rearrangement of the magnetic field, and solar flares may result in the formation of a shock that accelerates particles ahead of the CMEs loop and an active region play an important character in this event.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 8; 13-19
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterization of Selected Solar Radio Bursts Based on Solar Activity Detected by e- CALLISTO (Malaysia)
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412630.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
type IV
type V
type U
e-CALLISTO
Opis:
One of the main reasons to study more about the dynamics of solar radio bursts is because solar these bursts can interfere with the Global Positioning System (GPS) and communications systems. More importantly, these bursts are a key to understand the space weather condition. Recent work on the interpretation of the low frequency region of a main solar burst is discussed. Continuum radio bursts are often related to the solar activities such as an indication of the formation of sunspot, impulsive phase of solar flares and Coronal Mass Ejections (CMEs) and their frequencies correspond to the densities supposed to exist in the primary energy release volume. Specifically, solar burst in low frequency play an important role in interpretation of Sun activities. In this work, we have selected few solar bursts that successfully detected by our station at the National Space Centre, Banting Selangor. Our objective is to correlate the solar burst with Sun activities by looking at the main sources that responsibility with the trigger of solar burst. It is found that type II burst is dominant with Coronal Mass Ejections (CMEs), type III burst associated with solar flare, IV burst with the formation of active region and type U burst high solar flare. We believed that this work is a good start to monitor Sun’s activities in Malaysia as equatorial country.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 13, 2; 144-159
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chronology of Formation of Solar Radio Burst Types III and V Associated with Solar Flare Phenomenon on 19th September 2011
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/411656.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
solar radio burst
solar flare
type III
type V
CALLISTO
Opis:
The formation of two different solar bursts, type III and V in one solar flare event is presented. Both bursts are found on 19th September 2011 associated with C-class flares on active region 1295. From the observation, we believed that the mechanism of evolution the bursts play an important role in the event. It is found that type V burst appeared in five minutes after type III. There are a few active regions on the solar disk but most are magnetically simple and have remained rather quiet. An interpretation of this new result depends critically on the number of sunspots and the role of active region 1295. Sunspot number is increased up to 144 with seven sunspots can be observed. During that event, the speed of solar wind exceeds 433.8 km/second with 2.0 g/cm3 density of protons in the solar corona. Currently, radio flux is also high up to 150 SFU. The solar flare type C6 is continuously being observed in the X-ray region for 24 hours since 1541 UT and a maximum C1 is detected on 1847 UT. Although the sources of both bursts are same, the direction and ejection explode differ.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 5; 32-42
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of the Optical Image of the Solar Prominence with the Formation of Solar Radio Burst Type III on 3rd September 2015
Autorzy:
Hamidi, Z. S.
Norsham, N. A.
Mazlan, Muzamir
Yusof, N. S.
Jafni, A. I.
Kahlid, N. M.
Hamdan, M. N.
Kamaruddin, Farahana
Tahar, Muhammad Redzuan
Monstein, C.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/1192670.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
solar prominences
solar radio burst
type III
AR2407
e CALLISTO
Opis:
Solar radio burst in the range of 220 - 400 MHz have been correlated with the optical solar prominence phenomena covering the presence sunspot minimum. In combination of the observation in radio emission and the basis of this study, the occurrence of the event has been proposed. The active region of the prominence was AR2407. An individual type III burst was observed at 08:21 UT. The burst lasts for 20 seconds with a drift rate of 4.25 MHz/s. This burst was recorded by the Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) at Switzerland. The CALLISTO spectrometer is a spectrometer system that has been installed all around the world to observe the activity of the sun for 24 hours. The activation may be caused by shock waves issuing from prominences and solar flares. The loop prominences can be observed by using the optical telescope and is the initiates points of the following important flare that exist for 6 hours. The active region on the Sun experience the gradual build up of the magnetic field which gives rise to the sunspots, prominences and loops in the corona and produce the powerful outburst explosions.
Źródło:
World Scientific News; 2016, 47, 2; 230-240
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of the Radio Frequency Interference (RFI) in the Region of Solar Burst Type III Data At Selected CALLISTO Network
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412319.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
CALLISTO
low frequency
solar burst type III
Radio Frequency Interference (RFI)
Opis:
Compact Astronomical Low-frequency, Low-cost Instrument for Spectroscopy in Transportable Observatories (CALLISTO) is a global network of spectrometer system with the purpose to observe the Sun’s activities. There are 25 stations that are used for this purpose. Radio Frequency Interference (RFI) is a major obstacle when performing observation with CALLISTO. We have confirmed at least 2 stations out of 10 stations with a complete overview spectral (OVS) made available to us showed clear detection of these consistent types of RFI for each specific region. In Malaysia, these RFI are also clearly detected. The major RFI affecting CALLISTO within radio astronomical windows below 1 GHz are local electronic system specifically radio navigation (at 73.1 MHz and 75.2 MHz), broadcasting (at (i) 151 MHz, (ii) 151.8 MHz and 152 MHz), aeronautical navigation (at (i) 245.5 MHz, (ii) 248.7 MHz and (iii) 249 MHz and fixed mobile at (i) 605 MHz, (ii) 608.3 MHz, (iii) 612.2 MHz, (iv) 613.3 MHz). It is obviously showed that all sites within this region are free from interference at 320-330 MHz and is the best specific region to be considered for solar burst monitoring. We also investigate the effect of RFI on detection of solar burst. We have considered type III solar bursts on 9th March 2012 in order to measure the percentage of RFI level during the solar burst. The RFI level is as low as 6.512 % to 80.769 % above solar burst detection.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 10; 38-45
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Coronal Electron Density Distribution Estimated from Meter Type II Radio Bursts and Coronal Mass Ejections
Autorzy:
Yusof, N. S.
Hamidi, Z. S.
Norsham, N. A.
Jafni, A. I.
Kahlid, N. M.
Hamdan, M. N.
Kamaruddin, Farahana
Tahar, Muhammad Redzuan
Monstein, C.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/1192681.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
coronal mass ejection
Type II radio burst
electron density distribution
e-CALLISTO
Opis:
In this paper, we investigate the characteristic coronal mass ejection and Type II radio burst, we calculated the drift rate of Type II Radio burst and determined the electron density distribution from a Coronal Mass Ejections. The data were taken from website e-CALLISTO, Space Weather, SolarHam and also from the Langkawi National Observatory, National Space Agency, Langkawi Kedah, Malaysia. All the data collected on 15th March 2015, 4th November 2015 and 16th December 2015. On 16 March 2015, the events were associated with slower C9 solar flare and CME. For this week, the events were causing radio blackouts on Earth. On 4 November 2015, the events were associated with M1.9 solar flare, CME and Solar burst Type II. The value of the solar wind was 570.4 km/Sec and value for radio sun was 124 sfu. For drift rate, we calculated the value for sites in Sri Lanka (ACCIMT-SRI), Ooty, India (OOTY), Indonesia (INDONESIA) and Kasi, South Korea (KASI) at between 0324 to 0328 UTC. In South Korea was highest drift rate, which is 1.397 MHz/s. Also, at HB9SCT, Switzerland (HB9SCT), Humain, Belgium (Humain), Daro, Germany (Daro-VHF) and TCD in Birr, Ireland (BIR), we calculated the drift rate of solar burst Type II between 1200 until 1203 UTC. In Belgium had the highest value of the drift rate to compare at other sites. Harmonic pattern was also appeared for all these sites. On 16th December 2015, this event associated with C6.6 solar flare and CME. These events give an impact on the earth geomagnetic field which is formed of aurora because of the combination of both events that trigger geomagnetic storming.
Źródło:
World Scientific News; 2016, 46; 19-35
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Correlation between Radio Flux (10.7 cm) and Sunspot Number Based on Statistical Properties
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1189949.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
solar burst
radio region
solar flare
Coronal Mass Ejections (CMEs)
Opis:
Statistical properties of solar radio burst radio type II and III of this work will be highlighted. One of the best advantages of using the radio method is that it allows high quality images within an arc second resolution and different frequencies actually cover different layers of the solar atmosphere. Statistical studies of both bursts are required to obtain such observational constraints with sufficient statistical confidence. In the first part, the trend of both bursts from 2006-2011 is examined. We need to consider a few parameters such as a burst duration, drift rate, energy of the photon, and the structure of the burst. From (0.0 0.5) MHz/Sec, the data represent the highest slope with m = 1290.1685 km/MHz in average. In the range of (4.0 7.0) MHz/Sec, the range of CMEs velocity is less than 500km/Sec. The lowest CMEs velocity that can be observed is ~137 km/Sec. The relationship between both parameters is F10.7cm = 0.4568R + 73.8655. This work presents the first step toward an analytical model of statistics of solar radio burst information of average events as something crucial to the acceleration mechanism.
Źródło:
World Scientific News; 2016, 52; 70-80
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies