Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sawyer, E." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Convolution algebras with weighted rearrangement-invariant norm
Autorzy:
Kerman, R.
Sawyer, E
Powiązania:
https://bibliotekanauki.pl/articles/1291170.pdf
Data publikacji:
1994
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
Let X be a rearrangement-invariant space of Lebesgue-measurable functions on $ℝ^n$, such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on $ℝ^n$, define $X(w) = {F: ℝ^n → ℂ: ∞ > ∥F∥_{X(w)} := ∥Fw∥_X}$. We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at $x ∈ ℝ^n$ by $(F∗G)(x) = ʃ_{ℝ^n} F(x-y)G(y)dy$; more precisely, when $∥F∗G∥_{X(w)} ≤ ∥F∥_{X(w)} ∥G∥_{X(w)}$ for all F,G ∈ X(w).
Źródło:
Studia Mathematica; 1994, 108, 2; 103-126
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies