Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Saracevic, Muzafer" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Memoization method for storing of minimum-weight triangulation of a convex polygon
Autorzy:
Selimi, Aybeyan
Krrabaj, Samedin
Saracevic, Muzafer
Pepić, Selver
Powiązania:
https://bibliotekanauki.pl/articles/305479.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
minimum-weight triangulation
catalan number
data storage
memoization
dynamic programming
Opis:
This study presents a practical view of dynamic programming, specifically in the context of the application of finding the optimal solutions for the polygon triangulation problem. The problem of the optimal triangulation of polygon is considered to be as a recursive substructure. The basic idea of the constructed method lies in finding to an adequate way for a rapid generation of optimal triangulations and storing - them in as small as possible memory space. The upgraded method is based on a memoization technique, and its emphasis is in storing the results of the calculated values and returning the cached result when the same values again occur. The significance of the method is in the generation of the optimal triangulation for a large number of n. All the calculated weights in the triangulation process are stored and performed in the same table. Results processing and implementation of the method was carried out in the Java environment and the experimental results were compared with the square matrix and Hurtado-Noy method.
Źródło:
Computer Science; 2019, 20 (2); 195-211
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble machine learning methods to predict the balancing of ayurvedic constituents in the human body
Autorzy:
Rajasekar, Vani
Krishnamoorthi, Sathya
Saracevic, Muzafer
Pepic, Dzenis
Zajmovic, Mahir
Zogic, Haris
Powiązania:
https://bibliotekanauki.pl/articles/27312840.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
machine learning
artificial neural networks
diagnose
Ayurveda constituent
support vector machine
Opis:
In this paper, we demonstrate the result of certain machine-learning methods like support vector machine (SVM), naive Bayes (NB), decision tree (DT), k-nearest neighbor (KNN), artificial neural network (ANN), and AdaBoost algorithms for various performance characteristics to predict human body constituencies. Ayurveda-dosha studies have been used for a long time, but the quantitative reliability measurement of these diagnostic methods still lags. The careful and appropriate analysis leads to an effective treatment to predict human body constituencies. From an observation of the results, it is shown that the AdaBoost algorithm with hyperparameter tuning provides enhanced accuracy and recall (0.97), precision and F-score (0.96), and lower RSME values (0.64). The experimental results reveal that the improved model (which is based on ensemble-learning methods) significantly outperforms traditional methods. According to the findings, advancements in the proposed algorithms could give machine learning a promising future.
Źródło:
Computer Science; 2022, 23 (1); 117--132
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies