Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sadiq, O. M." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Analytical approach into dynamic behavior of functionally graded circular plates resting on two-parameter foundations under excitation force
Autorzy:
Salawu, S. A.
Sobamowo, M. G.
Sadiq, O. M.
Powiązania:
https://bibliotekanauki.pl/articles/1030674.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Laplace-Padè
Nonlinear dynamic analysis
functional graded plate
two-dimensional differential transform
two-parameter foundations
Opis:
The study of dynamic behavior of functional graded circular plates has gained significant attention in engineering in recent time due to the vast application of the material in engineering and manufacturing industry. This study focus on the application of two-dimensional differential transform method to investigate the dynamic response of functional graded circular plates resting on two-parameter elastic foundations. However, the maximum deflection is obtained using dimensionless scheme, Laplace-Padè approximant is used to treat the small domain issue of the analytical solutions. Also, the solutions obtained are used for parametric investigation. From the results, it is found out that increase in Winkler, Pasternak and combine foundation parameters results to decrease in maximum deflection, increase in material properties of the functional graded plates leads to decrease in maximum deflection, clamped boundary condition has the lower deflection. Increasing the excitation frequency results in lower deflection. Results obtained maybe used as benchmark for validation of method using other approaches.
Źródło:
World Scientific News; 2020, 139, 2; 115-134
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Analysis of Jump and Bifurcation Phenomena in a Forced Vibration of Geometrical Nonlinear Cantilever Beam: Application of Differential Transformation Method
Autorzy:
Sobamowo, M. G.
Yinusa, A. A.
Adeleye, O. A.
Oyelade, A. O.
Sadiq, O. M.
Powiązania:
https://bibliotekanauki.pl/articles/1031911.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Bifurcation Phenomenon
Differential transformation method
Jump phenomenon
Nonlinear vibration
Phase plane
Opis:
One of the classical features exhibited in nonlinear dynamics of engineering systems is the jump phenomenon, which is the discontinuous change in the steady state response of a system as a parameter is slowly varied. Such phenomenon is characterized by large amplitude dynamic responses of systems to small amplitude disturbances. It is established that this phenomenon cannot be described by the standard asymptotic and perturbation methods because they are limited to the study of small amplitude responses to small disturbances. Therefore, this paper presents the application of differential transformation method-Padé approximant to the solution of jump and bifurcation phenomena for a geometrical nonlinear cantilever beam subjected to a harmonic excitation. The accuracy and validity of the analytical solutions obtained by the differential transformation method are shown through a comparison of the results of the analytical solution with the corresponding results of the numerical solution obtained by fourth-order Runge-Kutta method and also with the results in a past study using harmonic balancing method. With the aid of the differential transformation method-Padé approximant, the effects of the nonlinear parameters in the model equation on the dynamic response of the beam are investigated. Also, the sensitivity of the beam to the external excitation amplitude is analyzed. In the distributed forced vibration, the jump phenomenon appeared in the response amplitude by variation of the excitation frequency while in the resonance frequency, the beat phenomenon with harmonic motion is seen for low level of excitation amplitude. At a certain frequency, the jump and bifurcation phenomena are seen in the curves of responses versus excitation amplitude. Additionally, the plots of the phase plane and time history of the system response are shown. It is established that the differential transformation method is a very useful mathematical tool for dealing with the nonlinear problems.
Źródło:
World Scientific News; 2020, 140; 26-58
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies